

DIAGNOSTIC DU SYSTEME D'ASSAINISSEMENT D'ATHIS

PHASE 2 : Campagne de mesures en période de nappe basse

VERDI Nord de France

80 rue de Marcq | CS 90049 59441 Wasquehal Cedex +33 20 81 95 16 Février 2024 (V1)

Rédigé par : I. BAACHAOUI

Visé par : P. MANET

1 Introduction	4
2 Rappel des conclusions de la phase 1	5
3 Descriptif de la campagne de mesures	6
3.1 Objectifs de la campagne de mesures	6
3.2 Contenu de la campagne de mesures	6
4 Methodologie de mesures et travaux preliminaires	7
4.1 Méthodologie de mesures	7
4.2 Equipements des points de mesures	8
4.3 Dispositions préalables	10
4.4 Limites des calculs	10
5 Analyse de la pluviométrie	11
5.1 Enregistrement de la pluviométrie	11
5.2 Caractérisation des pluies les plus importantes	13
6 Analyse de la piézométrie	14
7 Analyse des debits	15
7.1 Anomalies rencontrées lors de la campagne	15
7.2 Examen des courbes	15
8 Fonctionnement des réseaux par temps sec	22
8.1 Composition des flux hydrauliques	22
8.2 Pollution par temps sec	26
9 Fonctionnement des réseaux par temps de pluie	28
9.1 Surfaces actives raccordées	28
9.2 Suivi du trop-plein du PR Gare	30
10 Charges entrantes à la station d'épuration	31
10.1 Charge hydraulique	31
10.2 Charge organique	32
11 Synthèse de la campagne de Nappe Basse	32
12 Annexes	34

Figures

Figure 1 : Localisation du pluviomètre à Athis	8
Figure 2 : Localisation et photographie du puits suivi à Athis	8
Figure 3 : Récapitulatif des points de mesures EU Nappe basse, Athis	9
Figure 4 : Récapitulatif des points de mesures EP Nappe basse, Athis	9
Figure 5 : Illustration de quelques points de mesures de la campagne Nappe Basse	10
Figure 6 : Récapitulatif des points de mesure eaux usées et des bassins de collecte associés	10
Figure 7 : Estimation des débits théoriques pour chaque bassin versant	10
Figure 8 : Cumul pluviométrique sur la durée de la campagne Nappe Basse, Athis	11
Figure 9 : Récapitulatif de la pluviométrie lors de la campagne de mesures Nappe Basse, Athis	12
Figure 10 : Caractéristiques des pluies de fréquences d'apparition hebdomadaire à bisannuelle (station CHOUILLY)	13
Figure 11 : Caractéristiques des pluies ayant impacté le système d'assainissement	13
Figure 12 : Evolution de la profondeur de la nappe en mètres	14
Figure 13 : Localisation et courbe de débit moyen horaire de temps sec, PMEU1	
Figure 14 : Courbe de débit moyen horaire et pluviométrie, PMEU1	16
Figure 15 : Localisation et courbe de débit moyen horaire de temps sec, PMEU2	17
Figure 16 : Courbe de débit moyen horaire et pluviométrie, PMEU2	17
Figure 17 : Localisation et courbe de débit moyen horaire de temps sec, PMEU3	18
Figure 18 : Courbe de débit moyen horaire et pluviométrie, PMEU3	18
Figure 19 : Localisation et courbe de débit moyen horaire de temps sec, PMEU4	20
Figure 20 : Courbe de débit moyen horaire et pluviométrie, PMEU4	20
Figure 21 : Débits caractéristiques de temps sec	21
Figure 22 : Evaluation des débits d'eaux claires parasites par les différentes méthodes	23
Figure 23 : Bilan hydraulique par point de mesures	24
Figure 24 : Bilan hydraulique par secteur	24
Figure 25 : Localisation de deux intrusions d'ECPP avérées par la CAECPC	25
Figure 26 : Mesures de pollution durant la campagne nappe basse par temps sec	26
Figure 27 : Calcul du ratio DCO/DBO5	26
Figure 28 : Résultats de la campagne de pollution de temps par point de mesures	27
Figure 29 : Résultats de la campagne de pollution de temps par secteur	27
Figure 30: Exemple de détermination des surfaces actives pour le point PMEU4	28
Figure 31 : Estimation des surfaces actives au droit des points de mesures	29
Figure 32 : Estimation des surfaces actives par bassin versant	29
Figure 33 : Répartition des surfaces actives par bassin versant EP	29
Figure 34 : Vue sur le trop-plein du PR Gare vers le milieu naturel	
Figure 35 : Evolution de la hauteur d'eau dans le PR Gare (données CAECPC)	30
Figure 36 : Evolution des débits journaliers en entrée de la STEP de Athis durant la campagne nappe basse	31
Figure 37 : Bilan de la campagne de Nappe basse, Athis	32

1 INTRODUCTION

De par sa compétence assainissement, la Communauté d'Agglomération d'Epernay, Coteaux et Plaine de Champagne (CAECPC) gère, sur son territoire, plusieurs systèmes d'assainissement et notamment celui d'Athis. Ce système d'assainissement collecte les eaux usées de la commune d'Athis et traite ces dernières à une station d'épuration mise ne service en 1974 et d'une capacité de 620 EH. Le service assainissement est exploité en régie.

L'arrêté du 21 juillet 2015 modifié par l'arrêté du 31 juillet 2020 impose notamment la réalisation d'une étude diagnostique. De plus, un arrêté de mise en demeure de la DDT de la Marne du 21 mars 2018 exige une étude de mise en conformité du système d'assainissement collectif de la commune accompagnée d'un programme de travaux et la réhabilitation de la station d'épuration. C'est pourquoi, la CAECPC a décidé de lancer l'étude diagnostique du système d'assainissement d'Athis, en parallèle de l'étude pour la reconstruction de la station d'épuration lancée en 2022.

Cette étude sera également l'occasion de réaliser le zonage assainissement eaux usées et eaux pluviales de la commune.

L'étude se déroulera selon le schéma suivant :

- Phase 1 : Recueil et analyse des données, investigations sur le terrain ;
- Phase 2: Campagnes de mesures en nappe haute et nappe basse / visites nocturnes;
- Phase 3: Modélisation du schéma directeur;
- Phase 4: Diagnostic et bilan de fonctionnement;
- Phase 5: Elaboration du schéma directeur eaux usées;
- Phase 6: Actualisation du zonage d'assainissement.

Le présent rapport correspond à la phase 2. Il reprend les résultats de la campagne de mesure effectuée en période de nappe basse sur la commune du 10/10/2023 au 26/10/2023.

2 RAPPEL DES CONCLUSIONS DE LA PHASE 1

La phase 1 (état des lieux) a permis d'établir les conclusions suivantes :

Zones d'assainis- sement	 1 zone assainissement collectif pour le Bourg Quelques zones en assainissement non collectif aux alentours du bourg
Caractéristiques générales du sys- tème d'assainis- sement de Athis	 Réseau de linéaire 11,6 km majoritairement séparatif; 1,78 km de réseau unitaire; 5,9 km de réseau d'eaux usées; 0,38 km de réseau de refoulement d'eaux usées; 3,53 km de réseau d'eaux pluviales; 1 Déversoir d'orage sur le réseau; 2 postes de refoulement sur le réseau.
Pré-diagnostic de la station d'épura- tion	 Une station d'épuration de 620 EH traite les eaux usées domestiques du système d'assainissement. Elle fait l'objet d'une reconstruction en parallèle de l'étude diagnostique du système d'assainissement. Dégradation de la clôture; Prétraitement incomplet et peu efficace (dégrilleur manuel rapidement colmaté); Absence de zone de contact; Génie civil fortement dégradé par endroit (absence cependant de diagnostic génie civil à ce jour); Filtre à sable à l'abandon; Absence de zone clarifiée dans le clarificateur entrainant un départ de boue vers le milieu récepteur.
Pré-diagnostic des réseaux	 Milieu naturel contraignant: Nappe alluviale peu profonde dans la vallée de la Marne Une absence de bassin naturel ou agricole intercepté par les réseaux d'assainissement; Un PPRI limitant la gestion des eaux pluviales par infiltration dans certains secteurs. Un réseau majoritairement séparatif avec 1 780 ml de réseau unitaire, 5 900 ml de réseau eaux usées et 3 530 ml de réseau eaux pluviales; 1 trop-plein vers le milieu naturel; 2 postes de refoulement eaux usées; 52 ouvrages de gestion des eaux pluviales (puits d'infiltration) dont certains ne sont pas accessibles. Présence d'eaux claires parasites en période hivernale et d'eaux claires d'origine météorique

3 DESCRIPTIF DE LA CAMPAGNE DE MESURES

3.1 OBJECTIFS DE LA CAMPAGNE DE MESURES

Les objectifs de la campagne de mesures sur le système d'assainissement de la commune d'Athis sont définis comme suit :

3.1.1 ANALYSE DU FONCTIONNEMENT PAR TEMPS SEC DU SYSTEME D'ASSAINISSE-MENT

L'analyse du fonctionnent par temps sec du système d'assainissement vise à établir :

- La quantification des apports parasites dans les réseaux : il s'agit de déterminer les flux d'eaux claires parasites permanents, c'est-à-dire non liés à l'activité humaine, s'écoulant dans les réseaux. La présence ou non d'eaux claires parasites permanentes permet de juger de l'état des réseaux. La détermination des apports parasites permet ensuite de calculer, en les déduisant des volumes totaux, les débits d'eaux usées, c'est-à-dire les apports liés à l'activité humaine. L'importance des apports parasites est indiquée par le taux de dilution calculé par le rapport entre le débit d'apports parasites et le débit d'eaux usées.
- Le bilan et le diagnostic de la collecte de la pollution dans les réseaux établi à partir de l'analyse de deux paramètres :
 - Le taux de raccordement représente le rapport entre le volume d'eaux usées mesuré et le volume théorique d'eaux usées attendu au droit du point ou sur le bassin versant. Il traduit l'effectivité du raccordement des particuliers au droit d'un point de mesure ou sur un bassin versant.
 - Le taux de collecte représente le rapport entre le flux de pollution mesuré et le flux de pollution théorique attendu au droit du point ou sur le bassin versant. Il donne une indication sur le fonctionnement de la collecte de la pollution des particuliers. La comparaison avec les taux de raccordement permet d'identifier les pertes de pollution dans le système d'assainissement : existence d'ouvrage de traitement individuel raccordé au réseau, dépôt dans les réseaux, ...
 - L'objectif est d'atteindre des taux de raccordement et de collecte proches de 100%.
- L'impact du fonctionnement du système d'assainissement sur le milieu naturel récepteur en déterminant la pollution perdue et rejetée directement au milieu naturel. Dans le cas d'Athis, le milieu récepteur est Les Tarnauds, étant le cours d'eau présent sur la zone d'étude.

3.1.2 ANALYSE DU FONCTIONNEMENT PAR TEMPS DE PLUIE DU SYSTEME D'ASSAINIS-SEMENT

L'analyse du fonctionnement par temps de pluie du système d'assainissement vise à établir l'existence d'apports parasites d'origine météorique dans les réseaux d'eaux usées en secteur séparatif et unitaire : cela traduit entre autres la conformité des raccordements de particuliers et l'interception de bassin versant naturel. De plus, le réseau eaux pluviales a également été équipé de points de mesures afin d'élaborer la modélisation du réseau eaux pluviales dans une phase ultérieure. Ces apports sont estimés grâce à l'évaluation des surfaces actives raccordées au réseau.

3.2 CONTENU DE LA CAMPAGNE DE MESURES

Pour apporter les objectifs assignés à la campagne de mesures, celle-ci a comporté les opérations suivantes :

- Campagne de mesures en continu de débits du 10/10/2023 au 26/10/2023.
- Par souci de manque de données, nous allons prendre en compte les données reçues uniquement entre le 11/10/2023 (00h00) et le 25/10/2023 (00h00). (Soit 15 journées complètes).
- 4 points de mesure de débit EU en continu et pollution sur 24h.
- 3 points de mesure de débit EP en continu.
- Mesure en continu de la pluviométrie durant la campagne :
 - o 1 pluviomètre à auget basculant installé au niveau du cimetière de la commune. Ce pluviomètre a été installé du 10/10/2023 jusqu'au 26/10/2023.
- Suivi piézométrique du niveau de la nappe au droit d'un puits situé au niveau de la Salle des Fêtes d'Athis installé le 10/10/2023 jusqu'au 26/10/2023.

4 METHODOLOGIE DE MESURES ET TRAVAUX PRELIMI-NAIRES

4.1 METHODOLOGIE DE MESURES

L'équipement de la campagne de mesures de débits et de pollution ont été confiées à notre sous-traitant OTECH. L'analyse de la campagne de mesures reste à la charge de VERDI.

4.1.1 MESURE DES DEBITS

Compte tenu de la configuration et de la nature des réseaux sur la commune, les sites de mesures ont été équipés :

- d'un déversoir calibré à contraction latérale de type triangulaire avec application de la norme AFNOR X 10311 en vigueur. Les variations de la Hauteur d'eau sont enregistrées en continu sur une centrale d'acquisition équipée d'un capteur de pression. La transformation des Hauteurs en débit est assurée par l'utilisation des formules traditionnelles de Kindswater-Carter. Cette méthode, qui présente la meilleure précision, n'est valide que si l'écoulement sur le seuil est de type dénoyé, ce qui interdit des conditions d'écoulement perturbées (influence par l'aval, mise en charge, ...)
- de capteur Hauteur-vitesse enregistrant en continu les variations de la Hauteur et de la vitesse : cet équipement est adapté pour les sites sensibles à la mise en charge ou à des influences aval conduisant à des inversions de vitesse (la relation entre la Hauteur d'eau et le débit n'est plus univoque).

Leur pas de temps d'acquisition est programmé sur 5 minutes.

4.1.2 MESURE DE POLLUTION DE TEMPS SEC

Sur chaque site de prélèvement, la campagne de pollution de temps sec a consisté à la constitution de deux échantillons moyens proportionnément au débit :

- Un échantillon moyen diurne (6h-24h).
- Un échantillon moyen nocturne (0h-6h).

Les paramètres analysés sont :

- DCO;
- DBO5;
- MES;
- NTK:
- NH4;
- Pt.

4.1.3 MESURE DE LA PLUVOMETRIE

Un pluviomètre à auget basculant, installé au cimetière d'Athis a permis de mesurer la pluviométrie. Son pas de temps d'acquisition est programmé sur 5 min. Sa gamme de mesure est de 0,2 mm. La localisation du pluviomètre est présentée dans la figure suivante :

Figure 1 : Localisation du pluviomètre à Athis

4.1.4 MESURE DE LA PIEZOMETRIE

Le niveau de la nappe a été mesuré en continu (pas de temps 5 min) au droit d'un puits situé sous le parking de la Salle des Fêtes d'Athis. Sa localisation est précisée dans la figure suivante :

Figure 2: Localisation et photographie du puits suivi à Athis

4.2 EQUIPEMENTS DES POINTS DE MESURES

À la suite de la reconnaissance des réseaux de la phase 1, il a été proposé plusieurs points de mesures de débits et de pollution sur l'ensemble du système d'assainissement.

- Quatre points de mesure ont été installés sur le réseau EU ou Unitaire de la commune d'étude : PMEU1, PMEU2, PMEU3 et PMEU4.
- Trois points de mesure ont été installés sur le réseau EP : PMEP1, PMEP2 et PMEP3.

La localisation des points est faite sur le plan des bassins versants et points de mesures en **annexe 1** pour les points de mesures eaux usées et en **annexe 2** pour les points de mesures eaux pluviales.

Les caractéristiques de ces différents points sont reprises ci-après.

N°	Localisation	Type de mesures	Instrumentation	Mesure de pollution	Objectifs des mesures
PMEU 1	R32	Débit au pas de temps 5 min	Sonde de pression sur seuil triangulaire	Oui	Bilan hydraulique sur le bassin de collecte Zone d'activité
PMEU 2	R340	Débit au pas de temps 5 min	Sonde de pression sur seuil triangulaire	Oui	Bilan hydraulique sur le bassin de collecte Maison de retraite
PMEU 3	R369	Débit au pas de temps 5 min	Sonde de pression sur seuil triangulaire	Oui	Bilan hydraulique sur le bassin de collecte Mairie
DMELL 4	DD Core	Suivi du temps de fonction- nement des pompes	Pinces ampéromé- triques	Oui	Bilan hydraulique sur le bassin de collecte Route Nationale
PMEU 4 PR Gare	Détecteur de surverse	Sonde de pression	Non	Fonctionnement hydraulique du trop-plein	

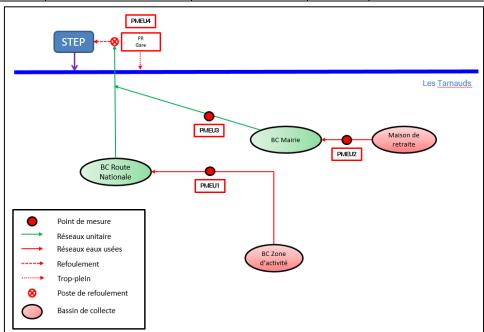


Figure 3 : Récapitulatif des points de mesures EU Nappe basse, Athis

N°	Localisation	Diamètre	Type de mesures	Instrumentation	Mesure de pollution	Objectifs des mesures
PMEP 1	R379	Ø800	Débit au pas de temps 5 min	Hauteur-vitesse	Non	Bilan hydraulique sur le bassin versant Tilleuls
PMEP 2	R193	Ø600	Débit au pas de temps 5 min	Hauteur-vitesse	Non	Bilan hydraulique sur le bassin versant Centre
PMEP 3	R363	Ø300	Débit au pas de temps 5 min	Hauteur-vitesse	Non	Bilan hydraulique sur le bassin versant Pommeau

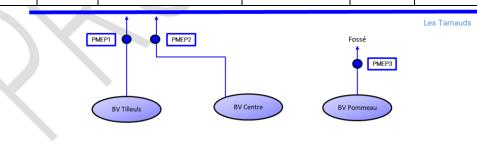


Figure 4 : Récapitulatif des points de mesures EP Nappe basse, Athis

Voici quelques illustrations des équipements posés dans le cadre de la campagne Nappe Basse :

PMEU1 : Mesure du débit du bassin versant Zone d'activité par Limnimétrie sur déversoir triangulaire.

PMEP1 : Mesure du débit du bassin versant EP Tilleuls par débitmètre effet Doppler Hauteur-Vitesse.

PMEU3: Mesure du débit du bassin versant EP Mairie par limnimétrie sur déversoir triangulaire.

Figure 5 : Illustration de quelques points de mesures de la campagne Nappe Basse

La relation entre bassin de collecte et point de mesures est donnée ci-après :

BC ZAC	BC Maison de retraite	BC Mairie	BC Route Nationale	BV Pommeau	BV Centre	BV Tilleuls
PMEU1	PMEU2	PMEU3 - PMEU2	PMEU4 - PMEU3 - PMEU2 - PMEU1	PMEP1	PMEP2	PMEP3

Figure 6 : Récapitulatif des points de mesure eaux usées et des bassins de collecte associés

La présentation des points de mesure est consultable en annexe 3.

4.3 DISPOSITIONS PREALABLES

Préalablement à la campagne de mesures, il a été définit les débits et charges de pollution théoriques au droit des points de mesures.

La définition de ces données a été effectuée lors de la phase 1 et avant le lancement de la campagne de mesures.

L'estimation des débits théoriques au droit des points de mesures est faite à partir des exploitations des données de consommations d'eau potable de population. Les résultats sont repris ci-après.

	Conso ostimáso	Répartition des	Abonnés actifs	Débits rejetés	EH estimés
BV collecté	Conso estimées par BV (m³/an)			estimés (m³/j)	Base 1 EH = 125 L/j
BV Maison de retraite	5 517	16%	1	14,4	130
BV Mairie	15 075	42%	173	39,2	350
BV Route Nationale	14 375	40%	143	37,6	335
BV Zone d'Activité	614	2%	7	1,6	15

Figure 7 : Estimation des débits théoriques pour chaque bassin versant

4.4 LIMITES DES CALCULS

Afin d'effectuer ces calculs, des hypothèses ont été formulées, notamment les suivantes :

- La consommation d'eau potable au moment de la mesure est supposée également à la moyenne quotidienne basée sur les années précédentes.
- Les chiffres de « 120 g de DCO/EH, 12 g de NTK/EH et 60 g de DBO5/EH » sont des valeurs moyennes
- Le taux de restitution est également une valeur moyenne.
- La sédimentation dans les réseaux peut provoquer une sous-estimation des charges rejetées au réseau.
- Le rejet après fosse septique, modifie considérablement les flux de pollution. Cette présence peut rendre l'effluent plus septique (donc plus difficile à traiter) et peut augmenter la production de bactéries filamenteuses.

5 ANALYSE DE LA PLUVIOMETRIE

5.1 ENREGISTREMENT DE LA PLUVIOMETRIE

Le pluviomètre a été installé le 10 octobre 2023. Afin d'avoir des données homogènes sur la durée, nous n'allons prendre en compte que les mesures effectuées à partir du 11 octobre 2023.

Sur la durée effective de la campagne (15 jours entre le 11/10/2023 et le 25/10/2023), le pluviomètre a enregistré un cumul de pluie de 72,8 mm.

La pluviométrie durant la campagne de mesure a été importante. En effet, d'après les données de la station météorologique de Chouilly, la pluviométrie moyenne mensuelle (statistiques 1991 – 2020) est de 55,4 mm pour le mois d'octobre. Or, sur la durée de la campagne (15 jours au mois d'octobre), le pluviomètre a enregistré un cumul de pluie de 72,8 mm.

Le tableau ci-dessous donne les caractéristiques générales de la pluviométrie durant la campagne de mesures :

Durás de la compogna	Nombre de jo	urs de pluies	Cumul de précipitations
Durée de la campagne	> 0 mm/j	> 2mm/j	mm
15 jours	10 jours	5 jours	72,8 mm

Figure 8 : Cumul pluviométrique sur la durée de la campagne Nappe Basse, Athis

L'évolution journalière de la pluviométrie au droit du pluviomètre (avec le cumul sur la période en rouge) est indiquée sur le graphique qui suit :

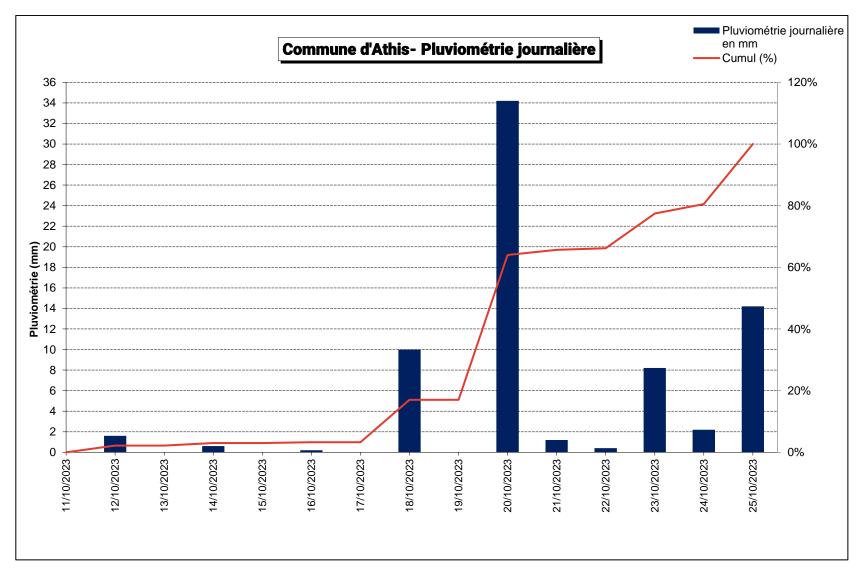


Figure 9 : Récapitulatif de la pluviométrie lors de la campagne de mesures Nappe Basse, Athis

5.2 CARACTERISATION DES PLUIES LES PLUS IMPORTANTES

La caractérisation des pluies les plus importantes est faite par rapport aux données statistiques METEOFRANCE de la station météorologique de CHOUILLY (station la plus proche dont METEOFRANCE dispose de données pour les pluies dont la période de retour est inférieure ou égale à 2 ans). Le graphique suivant montre les fréquences d'apparition des précipitations en fonction de la Hauteur et de la durée :

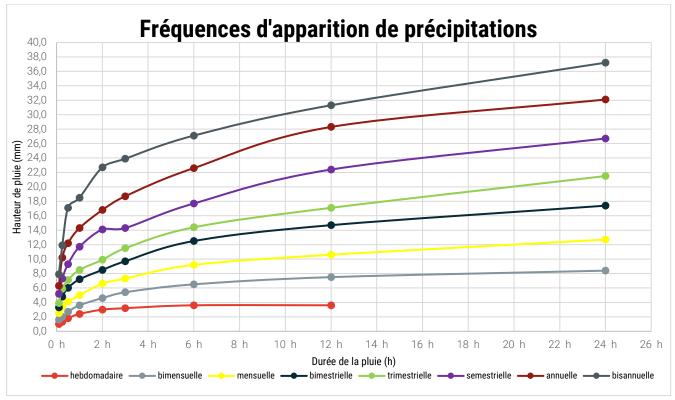


Figure 10 : Caractéristiques des pluies de fréquences d'apparition hebdomadaire à bisannuelle (station CHOUILLY)

Les pluies les plus significatives enregistrées pendant la campagne de mesures sont caractérisées dans le tableau ci-après.

N° épisode	Date	Hauteur total (mm)	Durée	Fréquence d'apparition		
n episode	Dale	Hauteur total (IIIII)	(h)	Durée totale	Pointe 15 min	
1	12/10/23	1,6	2	Inférieure à une semaine	Hebdomadaire	
2	14/10/23	0,6	2	Inférieure à une semaine	Inférieure à une semaine	
3	18/10/23	10	7	Mensuelle - Bimestrielle	Semestrielle	
4	20/10/23	25,2	15	Semestrielle - Annuelle	Trimestrielle	
5	20/10/23	10,2	12	Mensuelle	Bimensuelle	
6	23/10/23	8	8	Bimensuelle-Mensuelle	Hebdomadaire	
7	24/10/23	2,2	5	Inférieure à une semaine	Inférieure à une semaine	

Figure 11 : Caractéristiques des pluies ayant impacté le système d'assainissement

L'analyse détaillée des pluies significatives est donnée dans l'annexe 4.

6 ANALYSE DE LA PIEZOMETRIE

Le niveau de la nappe a été mesuré en continu (pas de temps 5 min) au droit d'un puits situé sous le parking de la Salle des Fêtes du 10/10/2023 au 26/10/2023.

Le graphique suivant montre l'évolution de la profondeur de la nappe par rapport au terrain naturel au cours de la campagne de mesures de nappe basse.

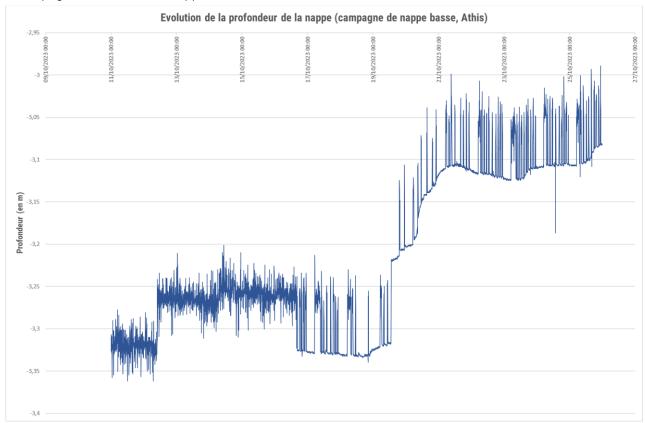


Figure 12 : Evolution de la profondeur de la nappe en mètres

D'après le graphique ci-dessus, le niveau de la nappe est resté stable durant les 10 premiers jours puis a légèrement augmenté en passant de -3,3 m/TN à -3,1 m/TN à partir du 20/10/2023 et s'est ensuite stabilisé. Globalement, le niveau de la nappe est inférieur de 1 m à 1,30 m (soit moins profond) par rapport ce qui est attendu d'après les chroniques piézométriques du secteur.

Nota : le rejet de la pompe à chaleur de la salle de fêtes rejoint le puits, cela peut expliquer les pics observés ponctuellement.

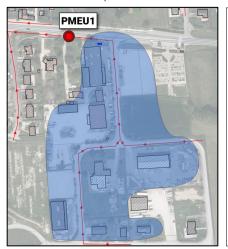
7 ANALYSE DES DEBITS

7.1 ANOMALIES RENCONTREES LORS DE LA CAMPAGNE

Selon le rapport de présentation de points de mesure d'OTECH, une partie des données issues du PMEU2 et PMEU3 sont douteuses :

- PMEU2 : la sonde a dérivé, ce problème est purement matériel.
- PMEU3 : la gamme de mesure de déversoir a été dépassée à cause de la mise en charge régulière du regard. Seule une hauteur d'eau a été enregistrée mais celle-ci ne peut pas être traduite en débit.

<u>Rappel:</u> Afin de pouvoir comparer les données entre elles, nous allons choisir la période pendant laquelle chaque point de mesure dispose d'une donnée. Les analyses des données et leurs interprétations seront effectuées à partir du 11 octobre 2023 au 25 octobre 2023.


Enfin, l'analyse du prélèvement de pollution 24h réalisé sur PMEU2 n'est pas cohérente avec les données usuelles et l'activité au niveau de la maison de retraite. Il est possible que le préleveur ait échantillonné des éléments décantés par exemple.

7.2 EXAMEN DES COURBES

En **annexe 5** sont fournis les résultats complets des courbes de mesures de débits et de hauteurs de pluies. Une première analyse de ces courbes pour chaque point de mesure est donnée ci-après.

7.2.1 PMEU1: AVAL BC ZONE D'ACTIVITE

Le point PMEU1 a été posé à l'aval du BC Zone d'activité au niveau de la route nationale.

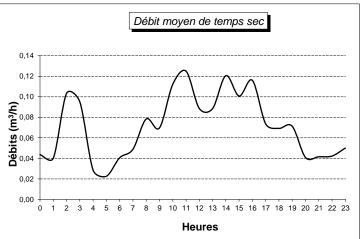


Figure 13: Localisation et courbe de débit moyen horaire de temps sec, PMEU1

Première analyse : La courbe de débits par temps sec présente plusieurs pics :

- Un pic la nuit aux alentours de 2h du matin.
- Un pic le matin aux alentours de 10h.
- Un pic l'après-midi entre 14h et 16h.

La courbe est différente d'une courbe classique de rejets domestiques. En effet, les débits rejetés reflètent une journée de travail classique avec une activité nocturne. Le débit minimum nocturne se situe entre 4h et 5h du matin

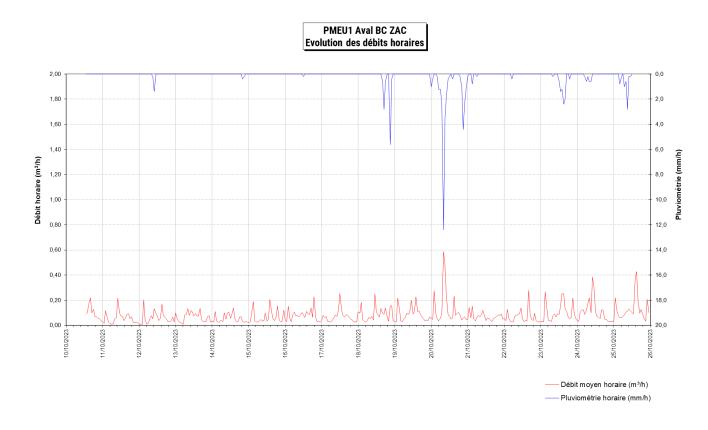



Figure 14: Courbe de débit moyen horaire et pluviométrie, PMEU1

L'effet de la pluviométrie sur le débit est visible surtout lors d'évènement pluvieux semestriel à annuel, cela confirme que des surfaces actives sont raccordées au réseau EU.

7.2.2 PMEU2: AVAL BC MAISON DE RETRAITE

Le point PM2 a été posé au niveau de la rue de la Mignotet et a permis de suivre les débits de rejet de la Maison de retraite. Il existe une forte présomption de rejet d'eaux claires à son encontre.

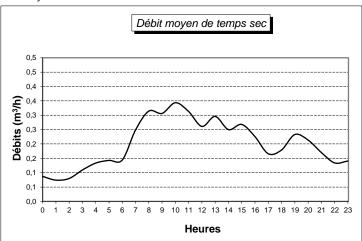


Figure 15 : Localisation et courbe de débit moyen horaire de temps sec, PMEU2

Première analyse : la courbe de débits par temps sec est classique et présente les pointes du matin (9-10h) et de soirée (19-20h). Le débit minimum nocturne se situe entre 1h et 2h du matin

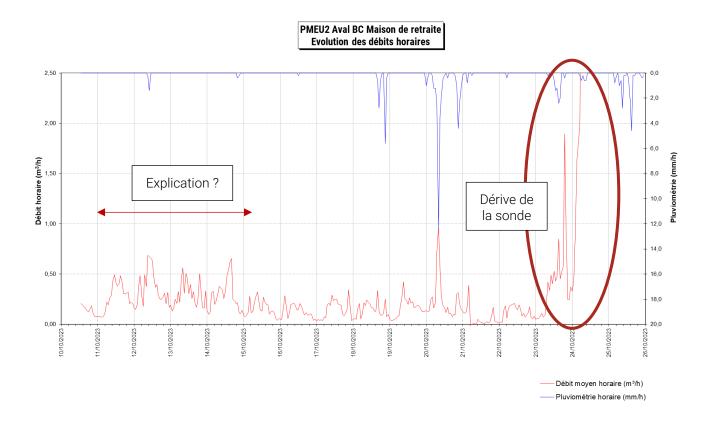


Figure 16 : Courbe de débit moyen horaire et pluviométrie, PMEU2

- Les données de mesures sont douteuses à cause de la dérive de la sonde à partir du 23/10/2023
- Les débits enregistrés entre le 11 et le 14/10/2023 sont supérieurs à ceux mesurés sur le reste de la campagne : si ces débits ne sont pas explicables, ils seront à écarter.
- L'effet de la pluviométrie sur le débit est visible surtout lors d'évènement pluvieux semestriel à annuel, cela confirme que des surfaces actives sont raccordées au réseau EU.

7.2.3 PMEU3: AVAL BC MAIRIE

Le point PMEU3 a été posé au niveau de la rue de la Ferme, à l'aval du BC Mairie.

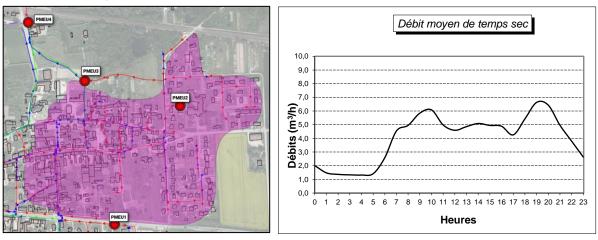


Figure 17 : Localisation et courbe de débit moyen horaire de temps sec, PMEU3

Première analyse : la courbe de débits par temps sec est classique et présente les pointes du matin (9-10h) et de soirée (20h). Le débit minimum nocturne se situe entre 3h et 5h du matin

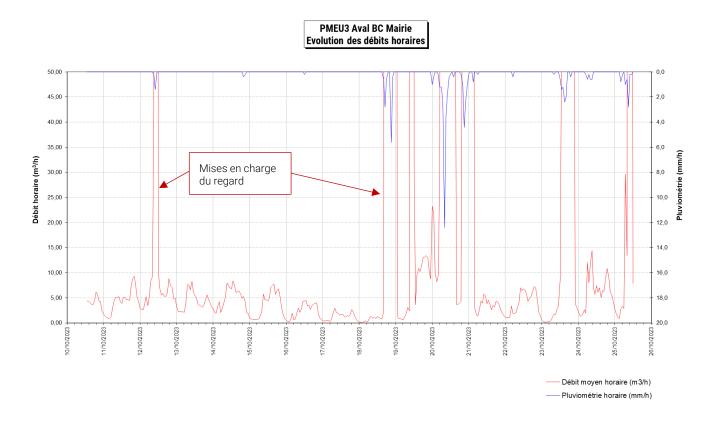


Figure 18 : Courbe de débit moyen horaire et pluviométrie, PMEU3

- L'impact de la pluviométrie sur les débits est important et provoque la mise en charge des réseaux.
- On observe une mise en charge du réseau EU aux dates suivantes : le 12, 18, 19, 20, 21, 23 et 25 octobre 2023 avec des débits incohérents. Ces données de débit ne sont pas prises en compte dans l'analyse du fonctionnement du réseau pour ce BV.

Remarque importante pour le PMEU3 : Rappelons qu'un réseau EP est connecté via un « DO » vers le réseau EU au niveau de la rue Saint-Rémy comme l'indique l'extrait de plan suivant. Au sein de ce « DO », le débit conservé rejoint le réseau EU tandis que le débit déversé rejoint le réseau EP.

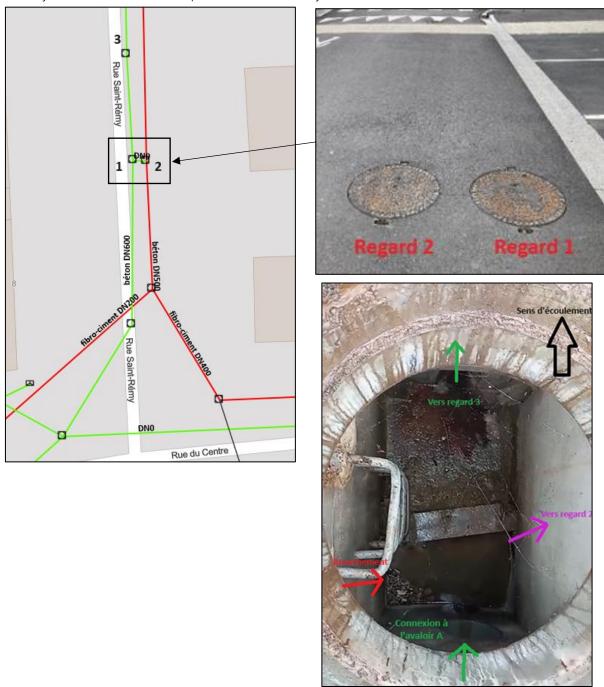


Figure 19: Fonctionnement du déversoir rue Saint-Rémy à Athis

Afin de connaître l'impact de ce réseau EP connecté, nous proposons d'équiper la conduite EP arrivant dans le DO ainsi que la conduite EP recevant le déversé.

7.2.4 PMEU4: AVAL BC ROUTE NATIONALE

Le point PM4 a été posé au niveau de la rue la Gare, à l'aval du BC Route Nationale.

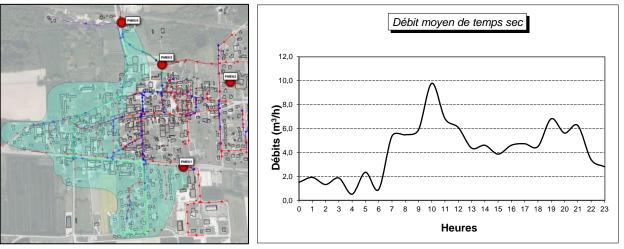


Figure 20 : Localisation et courbe de débit moyen horaire de temps sec, PMEU4

Première analyse : la courbe de débits par temps sec est classique car elle présente les pointes du matin (10h) et de soirée (19h-20h). Le débit minimum nocturne se situe à 4h du matin

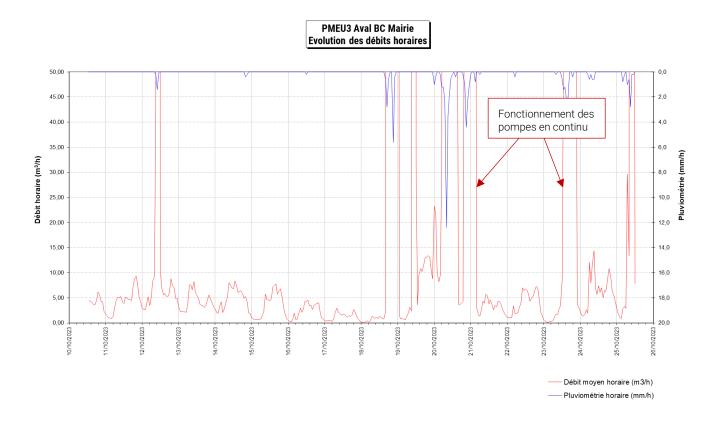


Figure 21 : Courbe de débit moyen horaire et pluviométrie, PMEU4

On note que les pompes du PR Gare ont fonctionné régulièrement en continu avec des débits compris entre 25 m³/h et 28 m³/h aux dates suivantes : le 12, 18, 19, 20, 21, 23 et 25 octobre 2023. Ces dates coïncident avec les mises en charge du réseau observées au PMEU3.

Ce fonctionnement a lieu lors d'évènement pluvieux mais également quelques heures après la fin d'un évènement pluvieux, c'est le phénomène de ressuyage.

Le tableau suivant donne le résultat des débits de temps sec des différents points de mesures (hors trop-plein et déversé) :

			Débits c	aractéristiq	ues de tem	ps sec	
Point de mesures	BC associés	Volume journalier	Débit moyen diurne	Débit moyen nocturne	Débit maxi	Débit mini	Débit mini pas temps 5 min
		m³/j	m³/h	m³/h	m³/h	m³/h	m³/h
PMEU1	BC Zone d'activité	1,58	0,08	0,06	0,21	0,02	0,02
PMEU2	BC Maison de retraite	4,96	0,23	0,10	0,39	0,06	0,05
PMEU3	BC Mairie + BC Maison de retraite	98,54	4,18	1,22	6,92	0,81	4,27
PMEU4	BC Route Nationale + BC Mairie + BC Maison de retraite + BC Zone d'activité	101,41	7,05	3,13	14,85	0,39	0,00

Figure 22 : Débits caractéristiques de temps sec

Nota : le point PMEU3 donne des volumes journaliers de temps sec très proches du PMEU4 (amont STEP), ce qui est anormal. Selon les volumes de rejet journaliers théoriques calculés, le volume PMEU4 est cohérent et est celui à prendre en compte.

Le point PMEU3 a connu des problèmes suite à la mise en charge du regard et ces données sont à interpréter en tenant compte de cet aléa.

8 FONCTIONNEMENT DES RESEAUX PAR TEMPS SEC

L'analyse suivante du fonctionnement des réseaux par temps sec comporte les chapitres suivants :

- la proposition de la composition des flux hydrauliques de temps sec, avec l'estimation des apports d'eaux claires parasites permanentes ;
- l'analyse de la pollution collectée.

Pour l'ensemble de l'exploitation, les quantités de pollution prises en compte par habitant, sont les suivantes :

- ▶ 120 g/hab/j pour la DCO,
- ▶ 60 g/hab/j pour la DBO5,
- ▶ 90 g/hab/j pour les MES,
- 12 gN/hab/j pour le NTK,
- 2 g/hab/j pour le Pt.

8.1 COMPOSITION DES FLUX HYDRAULIQUES

Le présent chapitre a pour objet, au travers d'une analyse détaillée des mesures de débits et de pollution :

- la quantification des apports parasites de temps sec dans les réseaux et l'évaluation des taux de dilution,
- la quantification des volumes d'eaux usées ; par déduction des volumes totaux mesurés, et l'évaluation des taux de raccordement.

8.1.1 PROBLEMATIQUE DES EAUX CLAIRES PARASITES

8.1.1.1 Origine et nature des eaux claires parasites de temps sec

Les origines des eaux claires parasites sont multiples. On distingue classiquement :

- les eaux parasites de captage, qui sont des apports ponctuels et qui résultent de l'ensemble des raccordements non conformes tels captages de sources, rejets d'eaux claires industrielles, raccordements de drains ou de fossés...;
- les eaux parasites d'infiltration, correspondant à des infiltrations diffuses, et qui peuvent s'introduire dans le réseau à travers des joints non étanches, des fissures, des échelons de regard mal scellés,...l'estimation de ces apports permet d'avoir une représentation de l'état physique des réseaux.

Selon leur origine et leur nature, les apports d'eaux claires parasites sont inégalement répartis dans le temps. On peut ainsi distinguer :

- les apports permanents (E.C.P.P.), non liés à la situation climatique, éventuellement variables selon la saison (drainage d'une nappe souterraine à niveau stable),
- les apports pseudo-permanents, se maintenant parfois plusieurs jours après une pluie et correspondant principalement à la pénétration d'eau de nappes à niveau variable ou au ressuyage des sols à travers des fossés de drainage raccordés.

Les débits supplémentaires engendrés par les eaux parasites sont susceptibles, lorsqu'ils sont importants, de perturber la collecte des effluents (saturation des collecteurs entraînant des surverses plus fréquentes) ainsi que leur traitement.

Les volumes collectés indûment ont un impact économique sur le traitement et sur la collecte, notamment lorsqu'il existe des stations de refoulement/relèvement.

8.1.1.2 Définition des taux de dilution

Le taux de dilution est le rapport entre les volumes d'eaux parasites et les volumes d'eaux usées : il traduit l'importance des eaux parasites. Plus le taux de dilution est faible, plus le réseau est considéré comme sain.

8.1.1.3 Quantification des apports parasites permanents

La détermination des apports parasites permanents en chaque point de mesures a été faite selon les méthodes suivantes :

Méthode du débit minimum (5 min) :

La méthode du débit minimum de nuit : l'hypothèse est faite que le débit minimum de nuit représente le débit constant d'eaux claires parasites ; cette méthode est adaptée pour des réseaux drainant des apports domestiques classiques avec une activité nulle la nuit.

Méthode par la dilution de l'effluent nocturne :

A partir des analyses des paramètres réalisées sur l'échantillon nocturne ; la comparaison entre les valeurs théoriques des concentrations des paramètres de pollution et les valeurs des concentrations mesurées fournit un taux de dilution D, qui donne le volume journalier d'eaux parasites :

$$Qecp = (1 - 1/D) \times Qmes$$

avec:

Qecp : débit d'eaux claires parasites

D: dilution des effluents

Qmes: débit journalier mesuré

Les concentrations théoriques moyennes de pollution servant de référence sont les valeurs usuelles de concentrations moyennes des paramètres de pollution pour des eaux usées strictes :

DCO: 750 mg/l
 DBO5: 300 mg/l
 NTK: 100 mg/l
 NH₄+: 60 mg/l
 Pt+: 15 mg/l

	Evaluation des ECPP						
Point de mesures	Q mini	Méthode de la dilution	Retenu				
PMEU1	1 m³/j	1 m³/j	1 m³/j				
PMEU2	1 m³/j	2 m³/j	2 m³/j				
PMEU3	102 m³/j	8 m³/j	8 m³/j				
PMEU4	8 m³/j	18 m³/j	18 m³/j				

Figure 23 : Evaluation des débits d'eaux claires parasites par les différentes méthodes

Lorsque la méthode du débit minimum nocturne (pas de temps 5 min) est disponible, on observe une différence avec le résultat obtenu avec la méthode de la dilution de l'effluent nocturne. Par expérience, c'est la valeur obtenue par cette dernière méthode qui est retenue.

8.1.2 SYNTHESE

Les tableaux ci-après reprennent les résultats par point de mesure.

Les données mesurées sur le PMEU3 ont été écartées.

	BILAN HYDRAULIQUE PAR POINT DE MESURE								
		POINTS D'ANALYSE TEMPS SEC							
	PMEU1	PMEU1 PMEU2 PMEU3 PMEU4							
	BC ZAC	Maison de re- traite	BC Mairie + Maison de retraite	BC Route Nationale + BC Mairie + Mai- son de retraite + BC ZAC					
Population théorique, base 125 L/j/EH	15 EH	130 EH	480 EH	830 EH					
Volume journalier théorique	1,6 m³/j	14 m³/j	54 m³/j	93 m³/j					
Volume moyen temps sec mesuré	2 m³/j	5 m³/j	99 m³/j	101 m³/j					
Volume moyen EU calculé	0,6 m³/j	3,0 m³/j	90,5 m³/j	83,4 m³/j					
Taux de raccordement	36%	21%	169%	90%					
Volume ECPP es- timé	1,0 m³/j	2,0 m³/j	8 m³/j	18 m³/j					
Taux de dilution	174%	67%	9%	22%					

Figure 24 : Bilan hydraulique par point de mesures

	BILAN HYDRAULIQUE PAR BASSIN DE COLLECTE						
		POINTS D'ANALYSE TEMPS SEC					
	BC ZAC	BC ZAC Maison de BC Route Nationale + BC Mairie					
Population théorique, base 125 L/j/EH	15 EH	130 EH	685 EH				
Volume journalier théorique	1,6 m³/j	14 m³/j	77 m³/j				
Volume moyen temps sec mesuré	2 m³/j	5 m³/j	95 m³/j				
Volume moyen EU calculé	0,6 m³/j	3,0 m³/j	79,9 m³/j				
Taux de raccordement	36%	21%	104%				
Volume ECPP estimé	1,0 m³/j	2,0 m³/j	15 m³/j				
Taux de dilution	174%	67%	19%				

Figure 25: Bilan hydraulique par secteur

Pour les eaux claires parasites permanentes, les constats suivants peuvent être faits :

Le système d'assainissement est impacté par l'intrusion d'eaux claires parasites durant la campagne de mesures de nappe basse. Le volume d'ECPP transitant à la STEP est estimé à 18 m³/j.

On observe des taux de dilution de 19% pour le BC Route Nationale + BC Mairie. Au niveau de la maison de retraite, un taux de dilution plus important de 67% a été calculé. Quant au BC ZAC, le taux de dilution obtenu est très important avec 174 %.

Pour les taux de raccordement, les constats suivants peuvent être faits :

Le taux de raccordement des BC Route Nationale + BC Mairie est bon avec 104%. Les taux de raccordement du BC ZAC et de la maison de retraite sont relativement faibles avec respectivement 36% et 21% de taux de raccordement. Cela peut s'expliquer par un débit théorique journalier surestimé ou une partie des eaux usées n'étant pas raccordés au réseau (existence d'ouvrages ANC par exemple). Dans ce cas, des enquêtes de branchement permettraient de déceler les mauvais branchements.

Remarque:

Courant décembre 2023, la régie de la CAECPC nous a informé avoir localisé deux intrusions d'ECPP sur Athis au sein du BC Route Nationale :

- Intrusion entre deux regards, rue de la gare en face de l'Eglise;
- Intrusion dans une boite de branchement EU non étanche proche du pont de l'ancienne gare.

Figure 26 : Localisation de deux intrusions d'ECPP avérées par la CAECPC

8.2 POLLUTION PAR TEMPS SEC

8.2.1 ANALYSE DES CONCENTRATIONS

Une campagne de pollution par temps sec (sur 24h) permettant de mesurer la pollution par temps sec a été réalisée du 10 Octobre 2023 (13h00) au 11 Octobre 2023 (13h00).

Les concentrations mesurées pour les paramètres DBO5, DCO, MES, NTK, NH4+ et Pt sont données dans le tableau ci-après :

				ration moyenne (mg/l)		
	Valeur EH (g/j/EH)	Valeurs usuelles	PMEU1	PMEU2	PMEU3	PMEU4
Débit	150 l/j/EH					
DBO5	60 g/j/Eh	150-500 mg/l	169 mg/l	642 mg/l	269 mg/l	248 mg/l
DCO	120 g/j/Eh	300-1000 mg/l	505 mg/l	2 237 mg/l	740 mg/l	760 mg/l
MES	60 g/j/Eh	100-400 mg/l	159 mg/l	759 mg/l	165 mg/l	332 mg/l
NTK	15 g/j/Eh	25-100 mg/l	140 mg/l	168 mg/l	90 mg/l	91 mg/l
NH4+	12 g/j/Eh	20-80 mg/l	158 mg/l	91 mg/l	87 mg/l	90 mg/l
Pt	2 g/j/Eh	5-20 mg/l	11 mg/l	291 mg/l	10 mg/l	10 mg/l

Figure 27: Mesures de pollution durant la campagne nappe basse par temps sec

La composition de l'effluent au droit des deux points de mesure se situe dans les valeurs usuelles sauf pour :

- Le point PMEU1 (Zone d'activité) : les valeurs en MES, NTK et NH4+ dépassent les valeurs limites.
- Le point PMEU2 (Maison de retraite) : les valeurs de l'ensemble des paramètres dépassent les valeurs usuelles et c'est particulièrement le cas pour la DBO5, DCO, MES et Pt.

La valeur usuelle du paramètre de biodégradabilité (DCO/DBO5) est de 3. Les valeurs ci-dessous indiquent un effluent correctement biodégradable pour l'ensemble des points à l'exception de la maison de retraite qui rejette des effluents plus difficilement biodégradables.

Valeur type	< 3
PMEU1	2,98
PMEU2	3,48
PMEU3	2,75
PMEU4	3,06

Figure 28: Calcul du ratio DCO/DBO5

8.2.2 ANALYSE DES FLUX DE POLLUTION

A partir des données de l'analyse selon les différents paramètres et les débits enregistrés pendant la campagne de pollution, on peut déterminer le flux de pollution et donc un taux de collecte de pollution. Les tableaux suivants donnent le taux de collecte par paramètre analysé selon les points de mesures ou les bassins de collecte :

	Points de mesures	PMEU1	PMEU2	PMEU3	PMEU4
P	Pollution attendue (EH)	15 EH	130 EH	480 EH	830 EH
DCO	Pollution (EH)	8 EH	82 EH	531 EH	642 EH
DCO	Taux de collecte (%)	53%	63%	111%	77%
DBO5	Pollution (EH)	5 EH	47 EH	387 EH	420 EH
DBO3	Taux de collecte (%)	35%	36%	81%	51%
MES	Pollution (EH)	3 EH	37 EH	158 EH	374 EH
IVILS	Taux de collecte (%)	22%	29%	33%	45%
NTK	Pollution (EH)	18 EH	49 EH	516 EH	618 EH
NIK	Taux de collecte (%)	117%	38%	108%	74%
NH4	Pollution (EH)	25 EH	33 EH	621 EH	759 EH
181114	Taux de collecte (%)	165%	26%	129%	91%
Pt	Pollution (EH)	10 EH	640 EH	655 EH	527 EH
Pί	Taux de collecte (%)	68%	492%	136%	64%

Figure 29 : Résultats de la campagne de pollution de temps par point de mesures

Bassins versants		BC ZAC	Maison de retraite	BC Route Nationale + BC Mairie
Pollution attendue (EH)		15 EH	130 EH	685 EH
DCO	Pollution (EH)	8 EH	82 EH	552 EH
DCO	Taux de collecte (%)	53%	63%	81%
DBO5	Pollution (EH)	5 EH	47 EH	367 EH
DBUS	Taux de collecte (%)	35%	36%	54%
MES	Pollution (EH)	3 EH	37 EH	333 EH
IVIES	Taux de collecte (%)	22%	29%	49%
NTK	Pollution (EH)	18 EH	49 EH	551 EH
NIK	Taux de collecte (%)	117%	38%	80%
NH4	Pollution (EH)	25 EH	33 EH	701 EH
МП4	Taux de collecte (%)	165%	26%	102%
Pt	Pollution (EH)	10 EH	640 EH	-123 EH
Pl	Taux de collecte (%)	68%	492%	-18%

Figure 30 : Résultats de la campagne de pollution de temps par secteur

Les taux de collecte du BC ZAC sont moyens voire faibles pour les paramètres DCO-DBO5-MES, en revanche ils sont très élevés pour les paramètres NTK, NH4. Ils ne sont pas cohérents avec le taux de raccordement.

Les taux de collecte de la Maison de retraite sont moyens voire faibles pour l'ensemble des paramètres sauf pour le Pt. Ils ne sont pas cohérents avec le taux de raccordement.

Les taux de collecte du BC Route Nationale + BC Mairie sont bons à moyens voire faibles pour l'ensemble des paramètres. Ils ne sont pas cohérents avec le taux de raccordement.

Généralement, ces taux de raccordement sont à interpréter avec précaution car cette méthode néglige la dégradation des effluents dans les canalisations et les calculs sont basés sur des valeurs théoriques qui sont plutôt élevée par rapport à ce qui est observé en réalité (exemple : 1 EH = 60g/DBO5/j).

Une autre explication à ce déficit de charge peut être la présence d'ouvrages ANC raccordés au réseau et traitant partiellement les effluents avant rejet vers le réseau.

9 FONCTIONNEMENT DES RESEAUX PAR TEMPS DE PLUIE

L'analyse du fonctionnement des réseaux par temps de pluie a concerné les thématiques suivantes :

- la détermination des surfaces actives raccordées aux réseaux unitaires ;
- l'analyse du fonctionnement des déversoirs d'orage.

9.1 SURFACES ACTIVES RACCORDEES

L'exploitation des mesures permet de déterminer les surfaces actives raccordées aux réseaux d'assainissement.

Lors d'un événement pluvieux, la différence entre le volume moyen de temps sec et le volume mesuré correspond au survolume de temps de pluie. A partir du survolume V et de la hauteur totale précipitée H en mm pour un maximum d'événements pluvieux, il est possible de déterminer la surface active raccordée aux réseaux d'assainissement grâce à la formule :

$$V = 10 \times S_{active} \times H$$

La pente de la droite de régression V = f(H) indique la surface active recherchée.

Pour chaque point de mesure, il a été dressé la courbe d'évolution des débits en fonction de la pluviométrie : une courbe de tendance par régression linéaire est construite afin d'estimer les surfaces actives :

- le coefficient de régression permet de juger de la fiabilité des résultats annoncés
- l'exemple du point PMEU4 est fourni ci-après.

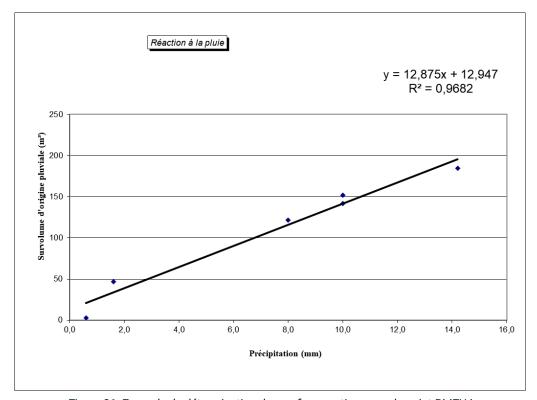


Figure 31: Exemple de détermination des surfaces actives pour le point PMEU4

Les courbes pour l'estimation des surfaces actives sont présentées en **annexe 8** pour les points de mesure EU et en **annexe 9** pour les points de mesure EP.

Les tableaux suivants présentent les résultats des estimations des surfaces actives au droit des points de mesures et à l'aval des bassins collectés.

		BILAN HYDRAULIQUE PAR POINT DE MESURE						
			POINTS D'A	ANALYSE TEMPS DE PLU	JIE			
	PMEU1	PMEU1 PMEU2 PMEU3 PMEU4 PMEP1 PMEP2 PMEP3						
	BV ZAC	BV Maison de retraite	BV Mairie + BV Maison de retraite	BV Rte Nationale + BV Mairie + BV Maison de retraite + BV ZAC	BV Tilleuls	BV Centre	BV Pommeau	
Surface active raccordée	100 m²	100 m²	Non fiable car regard en charge	1,3 ha	3,6 ha	2,9 ha	0,5 ha	

Figure 32 : Estimation des surfaces actives au droit des points de mesures

	BILAN HYDRAULIQUE PAR BASSIN VERSANT							
	POINTS D'ANALYSE TEMPS DE PLUIE							
	BV ZAC	BV Maison de retraite	BV Mairie + BV Route Nationale BV Tilleuls BV Centre BV					
Surface active raccordée	100 m²	100 m²	1,3 ha	3,6 ha	2,9 ha	0,5 ha		

Figure 33: Estimation des surfaces actives par bassin versant

L'estimation des surfaces actives se base sur l'analyse des débits engendrés par les différentes pluies significatives.

La surface active raccordée au niveau de la station d'épuration est estimée à 1,3 ha, avec environ 100 m² en provenance de la Maison de retraite et 100 m² en provenance de la ZAC. La mise en charge du regard au point PMEU3 n'a pas permis de collecter des données fiables. Il n'est pas possible d'estimer la répartition des surfaces actives entre le BC Mairie et le BC Route Nationale. Pour rappel, le BC Route Nationale concentre la majorité des tronçons unitaires avec un linéaire de 1,50 km contre 0,28 km pour le BC Mairie.

Ces apports d'ECPM peuvent provenir de mauvais branchements EP sur le réseau EU Strict.

Un test à la fumée permettrait de localiser avec précision les inversions de branchements sur le réseau EU Strict. Concernant les surfaces actives raccordés au réseau pluvial, le BV Tilleuls draine environ 3,6 ha, le BV Centre draine environ 2,9 ha et le BV Pommeau draine environ 5 000 m².

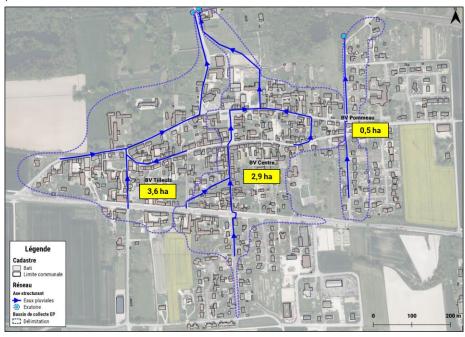


Figure 34: Répartition des surfaces actives par bassin versant EP

9.2 SUIVI DU TROP-PLEIN DU PR GARE

Notre analyse se base sur les données enregistrées par la sonde mesurant la hauteur d'eau au sein du PR Gare qui nous ont été fournies par la régie de la CAECPC.

Le but est d'observer si le trop-plein du PR vers le milieu naturel est sollicité lors d'évènements pluvieux.

Figure 35: Vue sur le trop-plein du PR Gare vers le milieu naturel

Le graphique ci-dessous reprend les variations de hauteur d'eau dans la bâche du PR Gare en fonction de la pluviométrie.

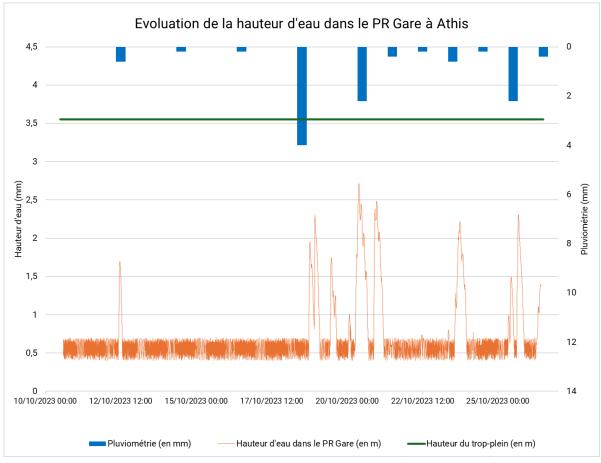


Figure 36 : Evolution de la hauteur d'eau dans le PR Gare (données CAECPC)

Le PR fonctionne avec un marnage classique en période de temps sec et monte en charge en période de temps de pluie. Cependant, durant la campagne de nappe basse, le niveau du trop-plein n'a jamais été atteint donc le PR Gare n'a pas déversé vers le milieu naturel.

10 CHARGES ENTRANTES A LA STATION D'EPURATION

10.1 CHARGE HYDRAULIQUE

Au cours de la campagne de nappe basse, le taux de charge hydraulique en entrée de STEP varie entre 100% et 438% avec un taux moyen de 225% (base débit nominal de temps sec).

En période de nappe basse et par temps sec, le taux de charge hydraulique moyen est de 156%. Par temps de pluie, le taux de charge hydraulique maximal est de 438 %.

En temps sec, la STEP est sollicitée à 100% minimum de sa charge hydraulique.

Jour	Charge hydrau- lique en entrée de STEP (m3/j)	Pluviométrie journalière (mm)	Débit nominal (m3/j)	Taux de charge hydraulique (%)
12/10/2023	151	1,6	93	162%
13/10/2023	93	0	93	100%
14/10/2023	102	0,6	93	110%
15/10/2023	111	0	93	119%
16/10/2023	103	0,2	93	111%
17/10/2023	101	0	93	108%
18/10/2023	246	10	93	265%
19/10/2023	278	0	93	299%
20/10/2023	407	34,2	93	438%
21/10/2023	344	1,2	93	370%
22/10/2023	248	0,4	93	267%
23/10/2023	304	8,2	93	327%
24/10/2023	157	2,2	93	169%
25/10/2023	286	14,2	93	307%

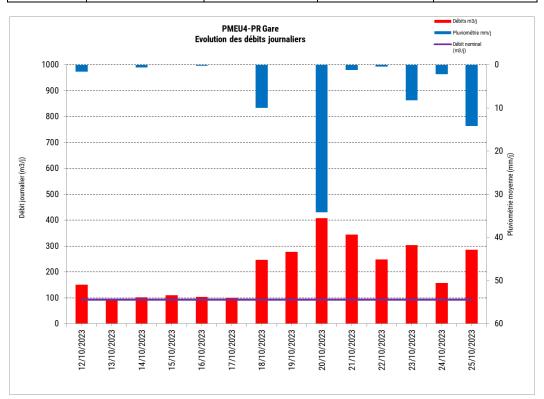


Figure 37 : Evolution des débits journaliers en entrée de la STEP de Athis durant la campagne nappe basse

Sur les 15 jours de la campagne de mesures, le débit nominal de la station a été dépassé 14 fois.

10.2 CHARGE ORGANIQUE

La station d'épuration est dimensionnée pour traiter jusqu'à 37kg de DBO5/j (en temps sec). L'analyse de pollution par temps sec réalisée entre le 10/10/2023 et le 11/10/2023 indique un flux de DBO5 égal à 25 kg/j de DBO5/j soit 68 % de la capacité nominale de la STEP, ce qui est correct.

11 SYNTHESE DE LA CAMPAGNE DE NAPPE BASSE

Les tableaux ci-dessous reprennent la synthèse des résultats de la campagne de nappe Basse :

		POINTS D'A	ANALYSE TEMP	S SEC		POIN	NTS D'ANALYS	SE TEMPS SEC
	PMEU1	PMEU2	PMEU3	PMEU4		PMEU1	PMEU2	PMEU4
	BC ZAC	Maison de retraite	BC Mairie + Maison de retraite	BC Route Nationale + BC Mairie + Maison de retraite + BC ZAC		BC ZAC	Maison de retraite	BC Route Nationale + BC Mairie
Population théorique, base 300 L/j/EH	15 EH	130 EH	480 EH	830 EH		15 EH	130 EH	685 EH
Volume journa- lier théorique	1,6 m³/j	14 m³/j	54 m³/j	93 m³/j	,	1,6 m³/j	14 m³/j	77 m³/j
Volume moyen temps sec me- suré	2 m³/j	5 m³/j	99 m³/j	101 m³/j		2 m³/j	5 m³/j	95 m³/j
Volume moyen EU calculé	0,6 m³/j	3,0 m³/j	90,5 m³/j	83,4 m³/j		0,6 m³/j	3 m³/j	79,9 m³/j
Taux de raccordement	36%	21%	169%	90%		36%	21%	104%
Volume ECPP estimé	1 m³/j	2 m³/j	8 m³/j	18 m³/j		1 m³/j	2 m³/j	15 m³/j
Taux de dilution	174%	67%	9%	22%		174%	67%	19%
Taux de col- lecte DBO5	35%	36%	81%	51%		35%	36%	54%
Taux de col- lecte DCO	53%	63%	111%	77%		53%	63%	81%
Taux de col- lecte MES	22%	29%	33%	45%		22%	29%	49%
Taux de col- lecte NTK	117%	38%	108%	74%		117%	38%	80%
Surface active raccordée	0,01 ha	0,01 ha	-	1,30 ha		0,01 ha	0,01 ha	1,28 ha

Figure 38 : Bilan de la campagne de Nappe basse, Athis

Le bilan de fonctionnement du système d'assainissement est le suivant :

Bilan de temps sec	 Le débit d'ECPP transitant à la STEP est estimé à 18 m³/j. Deux arrivées d'ECPP localisées par la régie sur le BC Route Nationale : rue de la Gare face à l'Eglise et proche du pont de l'ancienne gare. Le taux de raccordement hydraulique est bon pour le BC Route Nationale + Mairie, faible pour le BC ZAC et la maison de retraite. Le ratio DCO/DBO5 est classique pour l'ensemble des bassins de collecte ainsi que l'effluent en entrée de STEP. Il est supérieur à 3,5 pour la maison de retraite, ce qui indique un effluent plus difficilement biodégradable.
Bilan par temps de pluie	 Réseau unitaire/eaux usées: La surface active raccordée au réseau du système d'assainissement est estimée à 1,3 hectares. En nappe basse, le PR monte en charge lors d'évènements pluvieux mais ne déborde pas vers le milieu naturel. Réseau eaux pluviales: 7 ha raccordés au réseau EP répartis comme suit: 3,6 ha BV Tilleuls – 2,9 ha BV Centre – 0,5 ha BV Pommeau. Stagnation EP par temps sec.
Fonctionnement entrée de STEP	 En temps sec, la STEP est sollicitée à 100% minimum de sa charge hydraulique. Taux de charge hydraulique moyen de temps sec de 156% avec des pics à 438% par temps de pluie. 14 dépassements de la capacité nominale sur 15 jours Charge organique correcte : 68 % de charge en DBO5 le 10/10/2023.

12 ANNEXES

Annexe 1 : Plan de la campagne de mesure Eaux usées Nappe Basse

Annexe 2 : Plan de la campagne de mesure Eaux pluviales Nappe Basse

Annexe 3 : Présentation des points de mesure (OTECH)

Annexe 4 : Caractérisation des pluies significatives

Annexe 5 : Courbes de mesures de débits Eaux usées

Annexe 6 : Courbes de mesures de débits Eaux pluviales

Annexe 7: Analyses de pollution

Annexe 8 : Courbes d'estimation des surfaces actives Eaux usées

Annexe 9 : Courbes d'estimation des surfaces actives Eaux pluviales