Maître d'ouvrage:

DIAGNOSTIC DU SYSTEME D'ASSAINISSEMENT D'ATHIS

PHASE 3: Modélisation

VERDI Nord de France

80 rue de Marcq | CS 90049 59441 Wasquehal Cedex +33 20 81 95 16 pmanet@verdi.fr Août 2024 (V0)

Rédigé par : R. SALMAN

Visé par : P. MANET

1 Introduction	4
2 Construction du modele	5
2.1 Objectifs de la modélisation hydraulique	5
2.2 Principes généraux de la modélisation	5
2.3 Emprise du modèle	6
2.4 Présentation du logiciel MIKE +	6
2.5 Saisie des éléments du modèle	7
3 Calage du modèle	9
3.1 Données pluviométriques	9
3.2 Points de mesures	10
3.3 Apports des bassins versants naturels	11
3.4 Résultats du calage et caractéristiques des bassins versants urbains	11
4 Modélisation du fonctionnement des réseaux eaux pluviales en situation actuelle	· 13
4.1 Méthodologie d'analyse	13
4.2 Pluie projet	14
4.3 Diagnostic des réseaux pour les pluies courantes	15
4.4 Diagnostic des réseaux pour les pluies exceptionnelles	18
4.5 Quantification des volumes transités par le DO rue Saint-Rémy	21
4.6 Conclusion	22
5 Scénarios d'aménagements et modélisation de la situation future	23
5.1 Scénario 1 : Deconnexion du deversoir d'orage	23
5.2 Scénario 2 : Déconnexion des habitations sur le BV Centre	24
6 Annexes	25

Figures

Figure 1: Vue en plan Athis sous Mike+	7
Figure 2: Exemple de profil en long d'un collecteur saisi sous Mike +	7
Figure 3 : Synoptique avec implantation des points de mesures eaux usées	10
Figure 4: Synoptique avec implantation des points de mesures eaux pluviales	10
Figure 5 : Caractéristiques des pluies de projet	14
Figure 6 : Cartographie de la commune d'Athis pour une pluie mensuelle	15
Figure 7 : Cartographie des réseaux en charge dans le BV Centre 1 pour une pluie annuelle	16
Figure 8 : Cartographie des réseaux en charge dans le BV Centre 2 pour une pluie annuelle	16
Figure 9 : Exemple d'un profil en long d'une canalisation en charge rue Camille Soudant avec une p	
Figure 10 : Cartographie des débordements sur le BV Centre 1 pour une pluie décennale	18
Figure 11 : Cartographie des débordements sur le BV Centre 2 pour une pluie décennale	18
Figure 12 : Cartographie des canalisations en charge sur Athis pour une pluie décennale	19
Figure 13 : Cartographie des débordements sur le BV Centre 1 pour une pluie cinquantennale	20
Figure 14 : Cartographie des débordements sur le BV Centre 2 pour une pluie cinquantennale	20
Figure 15: Cartographie des canalisations en charge sur Athis pour une pluie cinquantennale	21
Figure 16 : Suppression du DO rue Saint-Rémy	23
Figure 17 : Cartographie des débordements sur le BV Centre pour une pluie cinquantennale après la du DO	
Figure 18 : Cartographie des débordements pour une pluie cinquantennale après la suppression déconnexion des logements individuels	
Tableaux	
Tableau 1: Définition des niveaux de pluie	5
Tableau 2 : Caractéristiques des pluies significatives ayant impacté le système d'assainisseme basse	
Tableau 3 :: Caractéristiques des pluies significatives ayant impacté le système d'assainisseme haute	
Tableau 4 : Tableau récapitulatif des résultats de calage des points de mesures	12
Tableau 5 : Paramètres de calage des BVU associés aux points de mesure EP	
Tableau 6 : Coefficients de Montana de la station de Chouilly	14
Tableau 7 : Synthèse de débordements sur Athis pour une pluie décennale	
Tableau 8 : Synthèse de débordements sur Athis pour une pluie cinquantennale	21
Tableau 9 : Volumes transité au sein du DO pour les différentes pluies de projet	21

1 INTRODUCTION

De par sa compétence assainissement, la Communauté d'Agglomération d'Epernay, Coteaux et Plaine de Champagne (CAECPC) gère, sur son territoire, plusieurs systèmes d'assainissement et notamment celui d'Athis. Ce système d'assainissement collecte les eaux usées de la commune d'Athis et traite ces dernières à une station d'épuration mise en service en 1974 et d'une capacité de 620 EH. Le service assainissement est exploité en régie.

L'arrêté du 21 juillet 2015 modifié par l'arrêté du 31 juillet 2020 impose notamment la réalisation d'une étude diagnostique. De plus, un arrêté de mise en demeure de la DDT de la Marne du 21 mars 2018 exige une étude de mise en conformité du système d'assainissement collectif de la commune accompagnée d'un programme de travaux et la réhabilitation de la station d'épuration. C'est pourquoi, la CAECPC a décidé de lancer l'étude diagnostique du système d'assainissement d'Athis, en parallèle de l'étude pour la reconstruction de la station d'épuration lancée en 2022.

Cette étude sera également l'occasion de réaliser le zonage assainissement eaux usées et eaux pluviales de la commune.

L'étude se déroulera selon le schéma suivant :

- Phase 1 : Recueil et analyse des données, investigations sur le terrain ;
- Phase 2 : Campagnes de mesures en nappe haute et nappe basse / visites nocturnes ;
- Phase 3 : Modélisation du schéma directeur ;
- Phase 4: Diagnostic et bilan de fonctionnement;
- Phase 5 : Elaboration du schéma directeur eaux usées ;
- Phase 6: Actualisation du zonage d'assainissement.

Le présent rapport concerne la phase 3 « Modélisation informatique ». Cette phase fait suite aux campagnes de mesures réalisées en Nappe haute et Nappe basse.

2 CONSTRUCTION DU MODELE

2.1 OBJECTIFS DE LA MODELISATION HYDRAULIQUE

L'étude hydraulique a pour objectifs d'appréhender l'ensemble des problèmes liés à la capacité hydraulique des réseaux par temps de pluie.

Les résultats obtenus à l'issue de la modélisation doivent permettre de définir :

- Les volumes/débits générés par les différents bassins versants/sous bassins versants et la répartition entre ceux-ci;
- Les volumes/débits gérés par les ouvrages/aménagements existants et le débit maximum pouvant être géré avant un rejet au milieu naturel;
- Les volumes rejetés au milieu naturel;
- Mettre en évidence les insuffisances hydrauliques et les problématiques en matière d'érosion et de ruissellement ;
- Le critère d'évaluation de la conformité du système d'assainissement pluvial ;

La réalisation de ces objectifs nécessite la représentation des phénomènes hydrauliques en continu et de manière dynamique sur toute la durée des pluies. C'est pourquoi, le logiciel MIKE + est utilisé, permettant le calcul des débits et volumes transités dans les réseaux pour différentes pluies de projet et la prise en compte des spécificités de la zone d'étude, à savoir :

- La structure maillée des réseaux d'assainissement.
- Les ouvrages spéciaux : bassin de stockage, déversoirs d'orage, postes de refoulement.
- Les influences du milieu naturel aux interfaces réseaux/milieu naturel.
- La nécessité d'étudier le système d'assainissement dans sa globalité dans la définition des aménagements.

2.2 PRINCIPES GENERAUX DE LA MODELISATION

La modélisation hydraulique comporte une série de simulations de temps de pluie. Les pluies de projet sont définies à partir des données statistiques de la station météorologique de Chouilly. Quatre niveaux de pluies sont définis :

Niveau de pluie	Pluie de référence	Définition
Niveau 1	Pluie mensuelle	Transfert de l'ensemble des effluents vers l'unité de traitement
Niveau 2	Pluie annuelle	Déversement contrôlé en direction du milieu récepteur
Niveau 3	Pluie décennale	Limitation des débordements des réseaux autant que possible, légère dégradation du milieu récepteur tolérée
Niveau 4	Pluie cinquantennale	Limitation des débordements des réseaux autant que possible, priorité à la protection des biens et des personnes

Tableau 1: Définition des niveaux de pluie

Les pluies de niveau 1 et 2 représentent des pluies courantes tandis que les pluies de niveau 3 et 4 sont d'occurrence rare.

La simulation hydraulique, réalisée par MIKE +, comporte deux phases :

- Un calcul hydrologique:
 - Génération des pluies de projet.
 - Transformation pluie-débit, permettant de quantifier les débits ruisselés à l'exutoire des versants et collectés par les réseaux.
- Un calcul hydraulique:
 - Modélisation hydraulique des écoulements en réseau.
 - Modélisation des bassins de stockage, des déversoirs d'orage, des ouvrages de décharge, ...

2.3 EMPRISE DU MODELE

Le modèle numérique intègre :

- Le réseau structurant du secteur d'étude.
- Les ouvrages particuliers (poste de refoulement, déversoirs d'orage, bassins)

Le modèle a été étendu de manière à :

- Englober les collecteurs principaux et secondaires (unitaires, eaux pluviales et eaux usées).
- Prendre en compte les ouvrages de transfert importants susceptibles de stocker des effluents en raison de leur taille ou d'être le siège de remous en raison de leur faible pente.

Le modèle construit représente 7,35 km de réseaux modélisés et une surface de 30 ha et comprend :

- 188 nœuds de calcul et 184 tronçons de réseaux
- 8 bassins versants eaux pluviales, usées et unitaires.

2.4 PRESENTATION DU LOGICIEL MIKE +

Le logiciel utilisé dans le cadre de cette étude est le logiciel MIKE+, développé par le Danish Hydraulic Institute (DHI). La version utilisée dans le cadre de ce projet est celle de 2024.

Il permet d'évaluer le fonctionnement d'un réseau d'assainissement grâce à deux moteurs de calcul : le module hydrologique et le module hydraulique.

- La modélisation du ruissellement de surface : module hydrologique.

Il s'agit d'une transformation pluie - débit qui peut être obtenue par différentes méthodes (méthode rationnelle généralisée, la méthode du réservoir linéaire ou du double réservoir linéaire). Ce modèle permet de calculer les débits générés en surface à l'exutoire de chaque bassin d'apport à partir de données pluviométriques et des caractéristiques des différents bassins versants du secteur d'étude.

Les paramètres requis en entrée sont le coefficient d'imperméabilisation du BV (en %), la longueur du plus long chemin hydraulique et la pente moyenne du BV.

D'autres paramètres importants et renseignés par défaut par le logiciel sont à indiquer comme les pertes initiales (en m), le coefficient d'imperméabilisation (en %) ou le lagtime (en secondes).

- La simulation des écoulements dans les réseaux : module hydraulique.

A partir des caractéristiques du réseau d'assainissement et des hydrogrammes injectés dans le réseau (débit de temps sec, débits ruisselés issus de la modélisation hydrologique), le logiciel génère l'écoulement dans les collecteurs (hauteur, vitesse, débit) par la résolution des équations de Barré Saint Venant en tout point du réseau. La modélisation hydraulique s'appuie ainsi sur une description fine de la structure du réseau.

Le logiciel intègre également différents paramètres en contraintes extérieures au modèle. Ces informations sont regroupées dans les « Conditions Limites » et comprennent la pluie, les rejets d'effluents domestiques et industriels, le niveau d'eau aux exutoires...

2.5 SAISIE DES ELEMENTS DU MODELE

2.5.1 LE RESEAU DE COLLECTE

Le réseau modélisé est composé du réseau d'assainissement unitaire et séparatif : regards, conduites et exutoires.

Les caractéristiques du réseau sont issues des reconnaissances réalisées au démarrage de la mission et du levé topographique préalable.

Les paramètres intégrés au modèle sont les suivants :

- Un regard est caractérisé par son TN, son Radier et son diamètre
- Une conduite est caractérisée par sa géométrie (diamètre pour un collecteur circulaire et hauteur/largeur pour un ouvrage cadre) sa pente et son matériau. Chaque conduite est connectée à un regard amont et un regard aval.

Figure 1: Vue en plan Athis sous Mike+

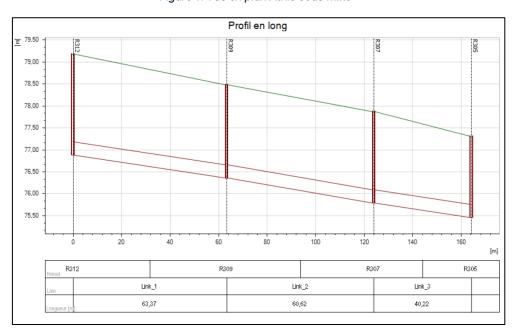


Figure 2: Exemple de profil en long d'un collecteur saisi sous Mike +

2.5.2 LES EXUTOIRES

Un exutoire est associé à un nœud du réseau. Trois types de loi de fonctionnement sont disponibles.

- Pas d'influence aval : régime permanent uniforme à l'exutoire.
- Hauteur constante (HC): hauteur d'eau du milieu récepteur reste constante à l'aval de l'exutoire.
- Hauteur variable (HV) : les hauteurs d'eau à l'exutoire sont saisies sous la forme d'histogrammes.

Le modèle numérique, décrivant le réseau structurant étudié, est constitué de **3 exutoires**, l'un vers un fossé et les deux autres vers Les Tarnauds.

2.5.3 LES BASSINS VERSANTS URBAINS

Le découpage en bassins versants élémentaires est intervenue après la définition du réseau structurant modélisé. Ces bassins versants ont été rattachés au réseau structurant. Ils sont de type Eaux usées et Eaux pluviales.

Pour les réseaux d'eaux pluviales, les caractéristiques physiques et topographiques du bassin versant sont :

- sa surface ;
- sa pente ;
- sa longueur;
- son coefficient d'imperméabilisation.

Ces caractéristiques sont ici très importantes, puisqu'elles vont déterminer les débits de temps de pluie à prendre en compte.

Le découpage s'est attaché à définir des bassins versants homogènes, tant au niveau de la structure des réseaux qu'au niveau du comportement hydrologique de leurs surfaces.

Les bassins versants de collecte eaux usées sont caractérisés par leurs nombre d'EH raccordés.

3 CALAGE DU MODELE

Le calage du modèle consiste à réajuster certains paramètres numériques (coefficient de ruissellement, temps de concentrations, rugosité des canalisations, etc.) afin de faire converger les résultats obtenus par modélisation numérique avec ceux constatés au cours de la phase de mesures. Il fait suite à la définition des bassins versants et vise notamment à ajuster les coefficients de ruissellement initialement attribués à chaque occupation du sol.

3.1 DONNEES PLUVIOMETRIQUES

Les mesures sur le réseau d'eaux pluviales ont été réalisées lors de la campagne de mesures de nappe basse qui s'est déroulée du 10/10/2023 au 26/10/2023 et de nappe haute qui s'est déroulée du 04/01/2024 au 20/02/2024.

Les pluies les plus significatives enregistrées pendant la campagne de mesures de nappe basse sont caractérisées dans le tableau ci-après.

Nº ánicodo	Date	Houtour total (mm)	Durée	Fréquence	d'apparition
N° épisode	Date	Hauteur total (mm)	(h)	Durée totale	Pointe 15 min
1	12/10/23	1,6	2	Inférieure à une semaine	Hebdomadaire
2	14/10/23	0,6	2	Inférieure à une semaine	Inférieure à une semaine
3	18/10/23	10	7	Mensuelle - Bimestrielle	Semestrielle
4	20/10/23	25,2	15	Semestrielle - Annuelle	Trimestrielle
5	20/10/23	10,2	12	Mensuelle	Bimensuelle
6	23/10/23	8	8	Bimensuelle-Mensuelle	Hebdomadaire
7	24/10/23	2,2	5	Inférieure à une semaine	Inférieure à une semaine

Tableau 2 : Caractéristiques des pluies significatives ayant impacté le système d'assainissement en nappe basse

Les pluies les plus significatives enregistrées pendant la campagne de mesures de nappe haute sont caractérisées dans le tableau ci-après.

NIº ánicada	Date	Hauteur total (mm)	Durée	Fréquence d'a	apparition
N° épisode	Date	Hauteur total (IIIII)	(h)	Durée totale	Pointe 15 min
1	17/01/24	9,2	2	Bimestrielle-Trimestrielle	Semestrielle
2	17/01/24	6,2	14	Hebdomadaire à bimensuelle	Inférieure à une semaine
3	18/01/24	3,8	5	Hebdomadaire	Inférieure à une semaine
4	22/01/24	5,8	4	Bimensuelle	Mensuelle
5	01/02/24	1,8	3	Inférieure à une semaine	Inférieure à une semaine
6	07/02/24	10,4	14	Mensuelle	Bimensuelle
7	08/02/24	3,8	7	Hebdomadaire	Inférieure à une semaine

Tableau 3 :: Caractéristiques des pluies significatives ayant impacté le système d'assainissement en nappe haute

3.2 POINTS DE MESURES

Durant la campagne de mesures, le réseau d'eaux pluviales a été suivi sur 4 points de mesures EU et 3 points de mesures EP. Deux points de mesures supplémentaires ont été ajoutés sur le SO EP Rue Saint-Rémy (DO-A et DO-B) au cours de la campagne de nappe haute. Les points de mesures sont localisés sur le synoptique cidessous :

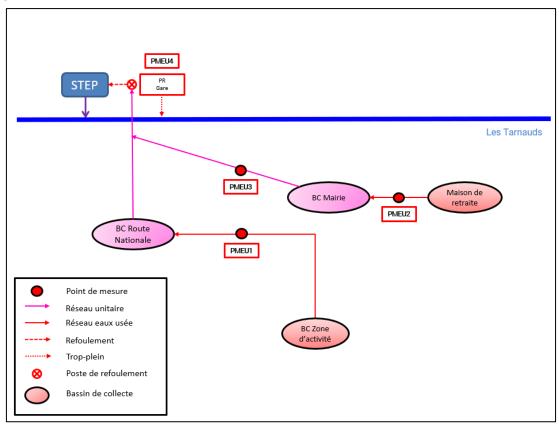


Figure 3 : Synoptique avec implantation des points de mesures eaux usées

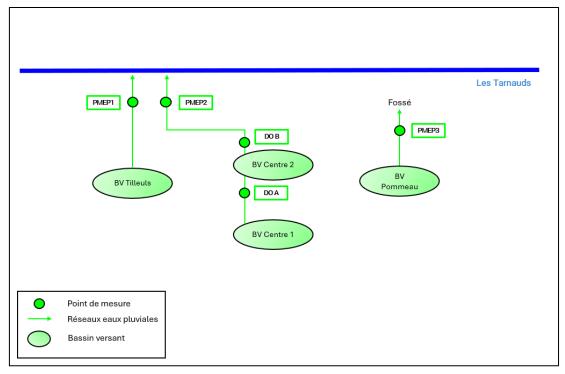


Figure 4: Synoptique avec implantation des points de mesures eaux pluviales

3.3 APPORTS DES BASSINS VERSANTS NATURELS

Sans objet.

3.4 RESULTATS DU CALAGE ET CARACTERISTIQUES DES BASSINS VERSANTS URBAINS

L'objectif du calage est d'ajuster le paramétrage du modèle hydraulique de façon à correspondre aux données mesurées pendant la campagne de mesures.

Le calage a été réalisé en prenant les mesures de la nappe basse pour les points PMEP1, PMEP2 et PMEP3 en parallèle avec les mesures de la nappe haute pour les points DO-A et DO-B.

=> Principe de calage retenu :

- Calage du modèle sur la pluie la plus importante de chaque campagne ;
- Confirmation et ajustement sur les 3 autres pluies mesurées lors de la campagne.

La pluie du 20 octobre 2023 a été choisie pour la pluie de calage en nappe basse et celle du 10 février 2024 pour la pluie de calage en nappe haute.

Les fiches de synthèse des résultats du calage pour chaque point de mesure sont fournies en **annexe** n°1.

La figure suivante montre un résultat de calage pour le PMEP2 en nappe basse.

Elle représente le débit simulé par le modèle (en vert) par rapport au débit mesuré pendant la campagne de mesure (en bleu).

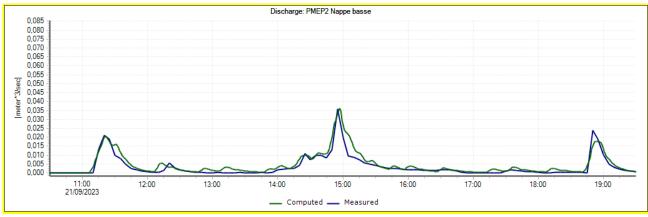


Figure 5: Résultat de calage PMEP2 en nappe basse

Les tableaux de synthèse des débits et volumes modélisés comparés aux valeurs acquises lors des campagnes de mesures sont fournies ci-dessous :

		Ecart %		
PM	Simulés	Mesurés	Ecart	mesures
PMEP1	1 192	1 007	185	18%
PMEP2	1 040	901	139	15%
PMEP3	214	148	65	44%
DO-A	81	70	11	16%
DO-B	25	24	1	5%

	Déb	Foort %		
PM	Simulés	Mesurés	Ecart	Ecart % mesures
PMEP1	0,15	0,15	0	-
PMEP2	0,19	0,20	-0,01	-9%
PMEP3	0,39	0,39	0	-
DO-A	0,025	0,034	-0,008	-25%
DO-B	0,012	0,027	-0,015	-56%

Tableau 4: Tableau récapitulatif des résultats de calage des points de mesures

Les paramètres définitifs des bassins versants alimentant les points de mesures, sont fournis sur le tableau suivant :

Bassin versant		Pommeau	Centre 1	Centre 2	Tilleuls
Surface totale	ha	3,20	5,67	7,59	13,60
Chemin hydraulique	m	460	380	630	770
Pente moyenne	%	10,00	18,80	6,20	5,40
Imperméabilité	%	25	27	40	29
Pertes initiales	mm	0,60	0,90	0,80	0,40
Temps de réponse	min	4	4	4	14

Tableau 5 : Paramètres de calage des BVU associés aux points de mesure EP

4 MODELISATION DU FONCTIONNEMENT DES RESEAUX EAUX PLUVIALES EN SITUATION ACTUELLE

4.1 METHODOLOGIE D'ANALYSE

Une analyse du fonctionnement des réseaux est menée pour chaque niveau de pluie. Les tronçons insuffisants et les insuffisances aval ainsi que l'origine de ces insuffisances sont recherchés.

Le fonctionnement hydraulique est analysé sur toutes les branches du réseau modélisé. L'analyse des résultats des simulations, notamment des profils en longs des cotes d'eau maximales dans les réseaux, permet d'identifier les zones d'insuffisances.

Le modèle calcule, pour chaque tronçon, le débit maximal admissible à pleine section. A partir de cette capacité, le modèle détermine à chaque instant de la simulation, en fonction des apports pluviaux, la ligne d'eau dans les collecteurs ; la forme et la pente de la ligne d'eau maximale obtenue permettent alors de juger de la capacité des collecteurs à évacuer les débits générés ;

- Lorsque la ligne d'eau maximale sur un tronçon présente une pente plus forte que celle du collecteur lui-même, on en déduit que le collecteur à une capacité insuffisante vis-à-vis des apports pluviaux à évacuer.
- Lorsque la pente de la ligne d'eau maximale est semblable à celle du tronçon, la capacité du collecteur est suffisante pour évacuer les apports pluviaux.
- Lorsque la pente de la ligne d'eau maximale est inférieure à la pente du collecteur, alors, le collecteur est sous l'influence hydraulique située en son aval et fonctionne comme un réservoir de stockage.
- Lorsque la ligne d'eau atteint la cote du terrain naturel, il y a débordement : le modèle considère alors que la ligne d'eau ne peut continuer à monter.

Les tronçons insuffisants à l'origine des dysfonctionnements observés ont été déterminés selon la méthode d'analyse précédente par examen des profils en long.

4.2 PLUIE PROJET

Les pluies de projet prises en compte dans la modélisation seront de type « double triangle ». Ce type de pluie élaboré par Desbordes résulte d'une analyse statistique d'événements pluvieux réels enregistrés localement et classés en fonction de leur durée et de leur intensité (coefficient de Montana). Il permet une sollicitation modérée du réseau avant l'arrivée du pic de la précipitation.

La durée totale retenue pour les calculs est de 2,50 heures. La hauteur totale de la pluie pendant cette durée de 2,50 heures a une période de retour inférieure à la période de retour de la période intense.

Les pluies sont construites sur la base des coefficients de Montana locaux de la station météorologique de <u>Chouilly</u>, valable pour différentes durées de pluies.

Quatre périodes de retour différentes sont étudiées sur lesquelles la période intense est de 15 minutes :

- Niveau 1 : T = 1 mois pluies faibles : tous les effluents sont traités avant rejet ;
- Niveau 2 : T = 1 an pluies moyennes : surverses acceptées et impact limité et contrôlé ;
- Niveau 3 : T = 10 ans pluies fortes : acceptation d'une détérioration de la qualité ;
- Niveau 4 : T = 50 ans pluies exceptionnelles : priorité à la protection des dommages aux personnes.

Pluie projet	Т	1 mois	1 an	10 ans	50 ans
Coefficients de Montana	а	1,864	4,314	13,375	22,760
(2,5 heures)	b	0,733	0,723	0,817	0,852

Tableau 6 : Coefficients de Montana de la station de Chouilly

Les caractéristiques des pluies créées sont reprises dans le tableau suivant :

Pluie projet	1 mois	1 an	10 ans	50 ans
Durée de la pluie intense	15 min			
Durée de la pluie	150 min			
Intensité maximale	24 mm/h	56 mm/h	140 mm/h	218 mm/h
Hauteur totale	7 mm	17 mm	33 mm	48 mm

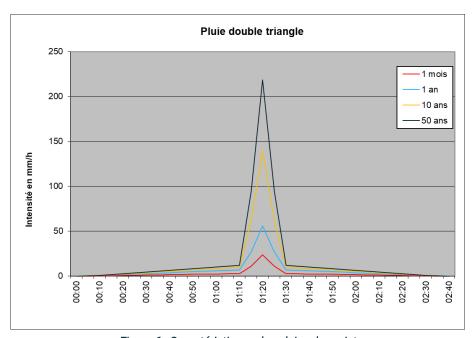


Figure 6 : Caractéristiques des pluies de projet

4.3 DIAGNOSTIC DES RESEAUX POUR LES PLUIES COURANTES

4.3.1 PLUIE MENSUELLE

Aucun débordement de réseau n'est constaté pour la pluie mensuelle. En revanche, on constate plusieurs réseaux en charge, ils atteignent leur capacité maximale de remplissage.

La globalité de ces réseaux sont des réseaux unitaires qui se trouvent dans le BV Centre 2 et de diamètre de 200 mm :

- Rue de la Ferme ;
- Rue Camille Soudant;
- Rue Saint-Rémy.

Une surveillance est nécessaire pour assurer le bon fonctionnement des réseaux.

Les cartes ci-dessous présentent la situation actuelle du réseau avec une pluie mensuelle :

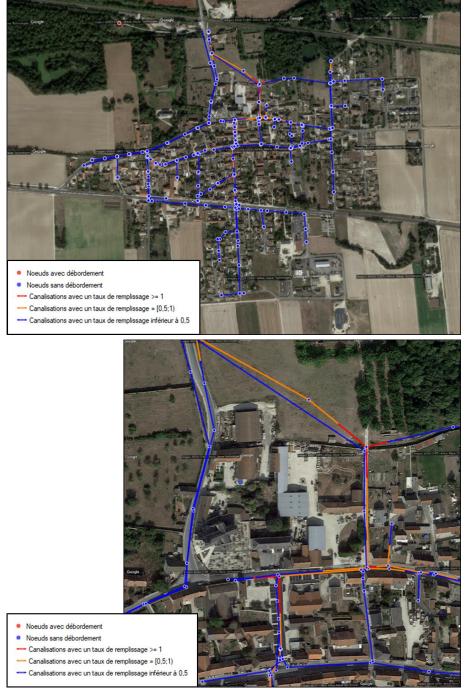


Figure 7: Cartographie de la commune d'Athis pour une pluie mensuelle

4.3.2 PLUIE ANNUELLE

On n'observe aucun débordement de réseaux avec une pluie annuelle. En revanche, on constate plusieurs réseaux en charge où la capacité maximale de remplissage est atteinte.

Quelques réseaux en charge sont constatés dans le BV Centre 1, notamment en amont du déversoir d'orage rue Saint-Rémy. Ce sont des réseaux séparatifs eaux pluviales de diamètre de 300 mm.

Figure 8 : Cartographie des réseaux en charge dans le BV Centre 1 pour une pluie annuelle

La majorité des réseaux en charge sont localisés dans le BV Centre 2, notamment sur la rue Camille Soudant. Ce sont des réseaux eaux pluviales de diamètre de 300 mm.

Figure 9 : Cartographie des réseaux en charge dans le BV Centre 2 pour une pluie annuelle

Il existe plusieurs facteurs qui peuvent provoquer la mise en charge du réseau :

- le sous-dimensionnement du réseau;
- les obstructions et débris ;
- les défauts de conception;
- les défauts d'entretien ;
- les pentes de canalisations.

Le profil en long suivant montre un exemple d'une canalisation rue Camille Soudant. On observe que les réseaux sont en principalement en charge à cause de la forte pente qui engendre une augmentation de la vitesse d'écoulement. Cela entraı̂ne donc une plus grande pression et un flux plus rapide, ce qui peut facilement surcharger les canalisations.

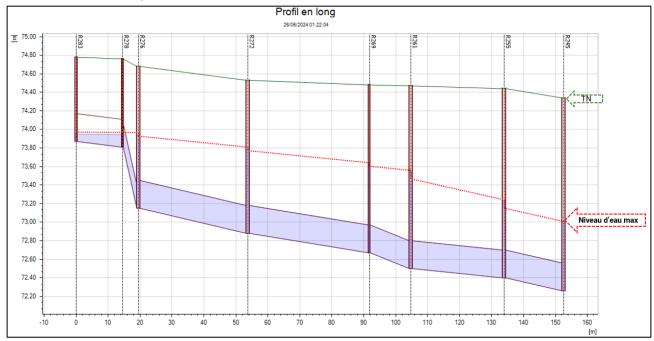


Figure 10: Exemple d'un profil en long d'une canalisation en charge rue Camille Soudant avec une pluie annuelle

4.4 DIAGNOSTIC DES RESEAUX POUR LES PLUIES EXCEPTIONNELLES

4.4.1 PLUIE DECENNALE

En situation actuelle et avec une pluie décennale, plusieurs débordements sont constatés sur la commune. Sur le BV Centre 1, on constate des débordements des regards en amont du DO rue Saint-Rémy. Ces regards sont caractérisés par un volume de débordement de 32 m³. Ce volume représente environ 6% du volume total du BV Centre 1.



Figure 11 : Cartographie des débordements sur le BV Centre 1 pour une pluie décennale

Concernant le BV Centre 2, on constate plusieurs débordements au niveau des regards d'eaux pluviales. Ces regards sont caractérisés par un volume total de débordement de 75 m³ qui représente d'environ 8% du volume total du BV.

Figure 12 : Cartographie des débordements sur le BV Centre 2 pour une pluie décennale

De plus, on constate des canalisations en charge sur la globalité de la commune :

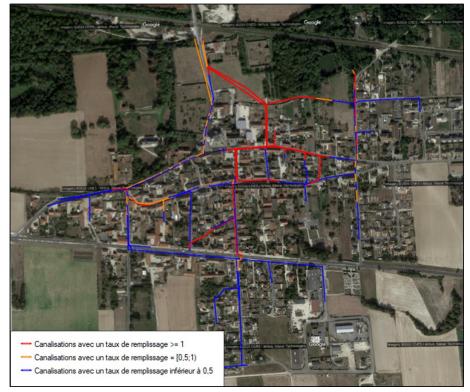


Figure 13 : Cartographie des canalisations en charge sur Athis pour une pluie décennale

Le tableau suivant présente les débordements sur Athis pour une pluie décennale :

Pluie de projet 10 ans		% de débordement
BV Pommeau	Aucun	-
BV Tilleuls	Aucun	-
BV Centre 1	Rue Saint-Rémy Rue du Moulin	6% du volume total du BV Centre 1
Rue Camille Soudant Rue du Fer à Cheval Rue Chollet Rue de la Ferme		7% du volume total du BV Centre 2

Tableau 7 : Synthèse de débordements sur Athis pour une pluie décennale

4.4.2 PLUIE CINQUANTENNALE

Avec une pluie cinquantennale, on observe davantage débordements, plus particulièrement sur le BV Centre. Sur le BV Centre 1, on constate des débordements des regards d'eaux pluviales sur la rue du Moulin. Ces regards sont caractérisés par un volume de débordement de 155 m³ qui représente environ 20% du volume total du BV Centre 1.

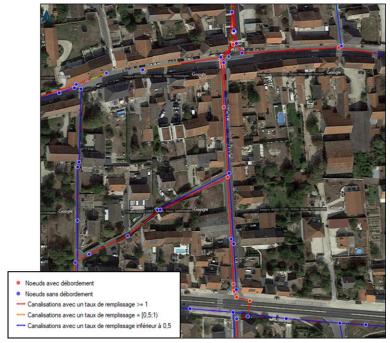


Figure 14 : Cartographie des débordements sur le BV Centre 1 pour une pluie cinquantennale

En ce qui concerne le BV Centre 2, on constate plusieurs débordements au niveau des regards d'eaux pluviales. Ces regards sont caractérisés par un volume total de débordement de 280 m³ qui représente d'environ 20% du volume total du BV.

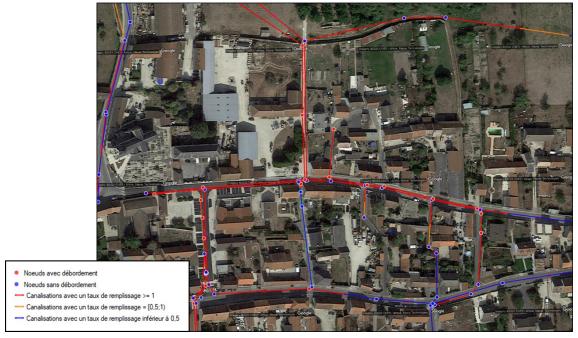


Figure 15 : Cartographie des débordements sur le BV Centre 2 pour une pluie cinquantennale

Canalisations avec un taux de remplissage >= 1 Canalisations avec un taux de remplissage = [0,5;1)

De plus, on constate des canalisations en charge ou en surcharge sur la globalité de la commune :

Figure 16: Cartographie des canalisations en charge sur Athis pour une pluie cinquantennale

Le tableau suivant présente les débordements sur Athis pour une pluie cinquantennale :

Canalisations avec un taux de remplissage inférieur à 0,5

Pluie de projet	50 ans	% de débordement	
BV Pommeau	Aucun	-	
BV Tilleuls	Aucun	-	
BV Centre 1	Rue Saint-Rémy Rue du Moulin	20% du volume total du BV Centre 1	
BV Centre 2	Rue Camille Soudant Rue du Fer à Cheval Rue Chollet Rue de la Ferme	20% du volume total du BV Centre 2	

Tableau 8 : Synthèse de débordements sur Athis pour une pluie cinquantennale

4.5 QUANTIFICATION DES VOLUMES TRANSITES PAR LE DO RUE SAINT-REMY

L'objectif principal est de quantifier les volumes transités au sein du déversoir d'orage rue Saint-Rémy afin de connaître les quantités d'eaux pluviales rejoignent le réseau Eaux usées et le réseau Eaux pluviales.

Le tableau suivant présente les volumes transités au sein du DO pour les différentes pluies de projet :

Pluie projet	1 mois	1 an	10 ans	50 ans
Volume en amont du DO (m³)	66,83	175,70	345,30	498,10
Volume déversé vers le réseau EP(m³)	25,32	94,81	231,70	365,90
Volume transité vers le réseau EU (m³)	41,51	80,89	113,60	132,20

Tableau 9 : Volumes transité au sein du DO pour les différentes pluies de projet

La modélisation met en évidence des volumes d'Eaux pluviales rejetés vers le réseau Eaux usées compris entre 40 m³ cumulés pour la pluie de retour 1 mois (durée 2h30) et 132 m³ cumulés pour la pluie de retour 50 ans (durée 2h30). La suppression du DO représente un gain de volume d'ECPM non négligeable.

4.6 CONCLUSION

- Pour les pluies courantes, bien que la modélisation ne montre pas de débordements, la mise en charge fréquente des réseaux signale des points de vulnérabilité qui nécessitent une attention particulière. Des mesures de surveillance et d'entretien sont essentielles pour assurer le bon fonctionnement des réseaux et prévenir l'augmentation des risques de débordement. Toutefois, il convient de souligner que le réseau est bien dimensionné pour une pluie courante.
- Pour les pluies exceptionnelles, environ 20% du volume total généré par les pluies sur le BV Centre débordent et peuvent stagner sur la chaussée voire inonder des parcelles privées.
 Ces observations mettent en évidence la nécessité de surveiller le BV Centre, qui est déjà saturé. Afin de prévenir ces risques de débordement, il est indispensable de limiter l'imperméabilisation et de privilégier l'infiltration des eaux pluviales que ce soit pour les futurs constructions ou par le déraccordement des habitations existantes.
 Pour les BV Pommeau et Tilleul, aucun débordement n'est observé pour les pluies exceptionnelles.
- Que ce soit pour les pluies courantes ou exceptionnelles, le DO EP connecté au réseau rue Saint-Rémy génère un volume d'ECPM non négligeable allant de 40 à 130 m³ (pour une pluie de retour 1 mois et pluie de retour 50 ans). Il convient de le supprimer.

5 SCENARIOS D'AMENAGEMENTS ET MODELISATION DE LA SITUATION FUTURE

5.1 SCENARIO 1 : DECONNEXION DU DEVERSOIR D'ORAGE

Le déversoir d'orage rue Saint-Rémy a la particularité de ne reprendre en amont qu'un réseau strictement eaux pluviales. Par temps sec et pour les pluies courantes, les eaux pluviales d'un réseau Ø300 rejoignent le réseau unitaire Ø200. Pour les pluies plus intenses, le réseau eaux pluviales déverse vers le réseau eaux pluviales Ø500. Afin de réduire les volumes d'ECPM, nous proposons un premier scénario qui consiste à déconnecter de ce déversoir.

Figure 17: Suppression du DO rue Saint-Rémy

Le scénario 1 a été modélisé pour une pluie cinquantennale afin de connaître l'impact de la déconnection du déversoir vers le réseau EP.

Avec le scénario 1, plusieurs débordements sont observés dans le BV Centre au niveau des regards d'eaux pluviales. Ces regards sont caractérisés par un volume total de débordement de 480 m³, ce qui représente environ 22% du volume total du BV.

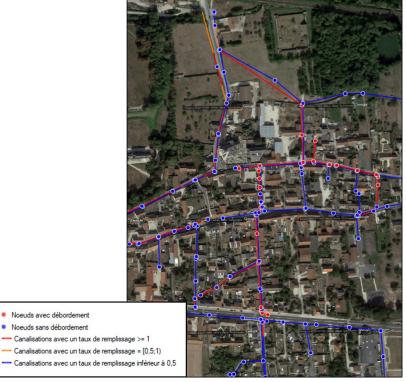


Figure 18 : Cartographie des débordements sur le BV Centre pour une pluie cinquantennale après la suppression du DO

En conclusion: les débordements observés en situation actuelle et après déconnexion du DO sont quasiidentiques. Le déraccordement du DO vers le réseau EP n'engendre pas d'aggravation du phénomène de débordement. En revanche, le volume débordé en pluie cinquantennale est conséquent et doit être géré afin d'éviter les inondations des chaussées ou des propriétés privées. Nous proposons donc de limiter l'imperméabilisation et de privilégier l'infiltration des eaux pluviales.

5.2 SCENARIO 2: DECONNEXION DES HABITATIONS SUR LE BV CENTRE

Dans ce scénario, nous avons simulé la déconnexion des habitations individuelles dans le BV Centre en parallèle de la suppression du DO rue Saint-Rémy.

Grâce à la carte du potentiel de déconnexion des eaux pluviales, les logements individuels présentant un bon potentiel de déconnexion (facile à moyen) ont été identifiés pour cette simulation. Le scénario a été modélisé pour une pluie cinquantennale.

Avec le scénario 2, des débordements sont toujours constatés sur plusieurs regards d'eaux pluviales dans le BV Centre. Cependant, le volume d'eau débordé a nettement diminué avec un volume de 30 m³, ce qui représente environ 2% du volume total du BV.

Figure 19 : Cartographie des débordements pour une pluie cinquantennale après la suppression du DO et la déconnexion des logements individuels

En conclusion: la déconnexion des eaux pluviales des habitations individuelles permet de réduire le volume débordé, en passant de 20% à 2% du volume total du BV, ce qui constitue une amélioration significative. Le volume résiduel débordé représente un léger ruissellement sur la chaussée dont les bordures en accotement permettent la rétention.

6 ANNEXES

Annexe n°1 : Résultats du calage du modèle